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INTRODUCTION 

 
Dynamic probabilistic risk analysis (DPRA) [1] has 

emerged in the nuclear industry as an effective tool to 
identify points of weakness in nuclear reactors and create 
a comprehensive approach to quantifying risk. While 
DPRA allows for detailed analysis, it usually requires 
thousands of runs due to the necessity of exploring low 
probability, high consequence events, which can be 
computationally prohibitively difficult to assess. 

Risk Analysis Virtual ENvironment (RAVEN) [2] is 
a software package being developed under the Nuclear 
Energy Advanced Modeling and Simulation program at 
the Idaho National Laboratory. It is able to manage 
complex control logic to drive a RELAP-7 [3] simulation 
and to handle sampling strategies including Monte Carlo, 
Latin Hypercube, Grid and Adaptive samplers [4]. 

By performing a thorough investigation of the 
possibility space of an accident scenario with RELAP-7, 
RAVEN is able to identify consequences of accident 
scenarios that have not been encountered [5]. The most 
computational resource intensive step of a RAVEN 
analysis is running the RELAP-7 code modeling the 
physical system behavior.  Using surrogate models to 
represent the outcomes of more complex simulations 
rather than the full model can greatly reduce the 
computation effort required. 

In situations where the uncertainty distributions of a 
model are unknown, or when there are multiple sets of 
uncertainty distributions, DPRA generally requires 
rerunning the physical model for each set of uncertainty 
distributions used. By taking an unbiased sample of the 
physical model and creating a surrogate model from the 
results, the surrogate model can be sampled under a 
different set of uncertainty distributions to provide 
equivalent results. This paper presents an example of this 
approach. 
 
EXAMPLE SYSTEM AND BASE SCENARIO 
UNDER CONSIDERATION  

 
A 2-loop pressurized water reactor (PWR) model was 
created using RELAP-7 based on the Organization for 
Economic Cooperation and Development (OECD) main 

steam line break benchmark [6].  Figure 1 shows the 
physical arrangement of the system under consideration 
and RELAP-7 model. 
 

 
Fig. 1. PWR schematic (a) and RELAP-7 model (b) 

 
For RELAP-7 runs, every fuel pin was classified into one 
of three groups based on their heat flux, which is modeled 
as a flow channel with an attached heat structure.  Each 
simplified loop connects from the upper plenum to a 
steam generator (represented by a heat exchanger) and 
then through a downcomer to the lower plenum. A single 
pump model is used in each loop to represent all of the 
pumping systems (see Fig. 1(b)). 
 
Based on this model, a loss of off-site power (LOOP) 
event causing a station blackout (SBO) accident was 



examined. The progression of the accident is that at time 
t=0, outside power is lost, and the plant successfully 
scrams one second later. At t=t1, the diesel generators fail 
and the plant enters a SBO condition. This condition 
persists until AC power is restored, by either repairing the 
diesel generator systems or recovering off-site power, or 
the cladding is damaged. Each simulation occurred over a 
2500 second period, and in order to force the time of plant 
failure to fall within that period, the viscosity of the water 
was artificially altered to reduce the effectiveness of 
passive cooling systems.  

There are four uncertain parameters under 
consideration: 
 
 
• Time of diesel generator failure t1 represented by a 

normal distribution (𝜇 = 400	𝑠, 𝜎 = 150	𝑠) 
• Diesel generator repair time represented by an 

exponential distribution (𝜆 = 0.0056/𝑠) truncated at 
1s  

• Time to off-site power recovery represented by a 
Weibull distribution (𝛼 = 0.629 𝛽 = 1246	𝑠) 

• Failure of the cladding represented by a uniform 
distribution (	𝑢𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑	 =
1255.3722	𝐾	𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 = 1699.8167	𝐾) 

Using this physical model and set of uncertain 
parameters, a database of results was created. However, 
the distribution information was not used in the 
construction of this database. Instead, each parameter was 
represented by nine grid-sampled points uniformly-spaced 
in value in order to cover the entirety of the problem 
space, requiring 94=6561 runs. By creating this without 
considering distribution information, the database is 
agnostic to the distribution used in analysis. From this 
database, a surrogate model of the system using an 
inverse distance weighting scheme [7, 8] to determine 
success or failure of the cladding. This model was chosen 
because it has a single tuning parameter. This makes the 
model as simple as possible at the cost of fidelity. 

4000 Monte Carlo runs were performed on the 
surrogate model, using the distributions above. The same 
number of runs were performed on the RELAP-7 code, 
and their probabilities of clad damage were compared. 

 
RESULTS 

 
Between the time of diesel generator failure and the 

restoration of power, through repair of either offsite 
power or the generators, the plant is in a SBO condition. 
During this time, if the coolant recirculation pumps fail to 
function, the clad temperature rises until the cladding is 
damaged or power is restored. Figure 2 shows the 
overlaid temperature profiles of the grid-sampled 
RELAP-7 runs used in order to create the database of 
results. 

Fig. 2. Temperature of the cladding during grid sampled 
RELAP-7 runs 

 
In the collection of RELAP-7 runs shown in Figure 2, 

the temperatures split off from the baseline to rapidly rise 
at the times where the diesel generators fail. These 
temperatures continue to increase until the restoration of 
electric power, where the cladding temperature branches 
again to cool when water is restored to the core.  

From the Monte Carlo sampling performed on the 
RELAP-7 code, the probability of clad damage was found 
to be 0.302 ± 0.007, in agreement with the sampling 
performed on the surrogate model with a probability of 
clad damage of 0.295 ± 0.007. As the time to perform the 
sampled runs on the RELAP-7 code was greater than 600 
CPU days, while the sampling of the surrogate model 
could complete in under half a CPU day, there is a large 
advantage in the necessary computational resources 
required to determine the probability of Boolean 
parameters. This advantage is limited to the case when the 
database of results can be used multiple times, however. 

It was also discovered that the accuracy of the 
surrogate model is limited in scope with respect to the 
predicted probability of clad damage, which the model 
was optimized for. The cladding temperature histories 
shown in Figure 2 follow a limited set of paths, unlike 
what would be expected from a Monte Carlo strategy. 
While reducing bias, for continuous parameters this can 
distort the behavior of a surrogate model. 



 
 

Fig. 3. Maximum temperature histogram of cladding 
during RELAP-7 (top) and surrogate model (bottom) runs 

 
Between the leftmost part of the graphs in Figure 3, 

where the plant never enters an SBO condition, and the 
rightmost part of the graphs, where the simulation was 
terminated early due to failure of the cladding, an 
inspection of the graphs shows that there is little 
agreement. Although the probabilities of cladding damage 
agree, the surrogate model fails to predict the behavior of 
the RELAP-7 code in situations where the temperature 
rises before recovering. Further work remains in the use 
of surrogate models in the estimation of continuous 
parameters as opposed to Boolean parameters. 

 
 
NOMENCLATURE 
 
µ=mean of the normal distribution 
σ=standard deviation of the normal distribution 
λ= exponential distribution rate parameter 
α=Weibull distribution shape parameter 

β= Weibull distribution scale parameter 
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