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INTRODUCTION  

In the past decades, several numerical simulation codes 
have been employed to simulate accident dynamics (e.g., 
RELAP5-3D [1], MELCOR [2], MAAP [3]).  

In order to evaluate impact of uncertainties into 
accident dynamics several stochastic methodologies have 
been coupled with these codes. These stochastic methods 
range from classical Monte-Carlo and Latin Hypercube 
sampling to stochastic polynomial methods.  

Similar approaches have been introduced into the risk 
and safety community where stochastic methods (such as 
RAVEN [4], ADAPT [5], MCDET [6], ADS [7]) have been 
coupled with safety analysis codes in order to evaluate the 
safety impact of timing and sequencing of events. These 
approaches are usually called Dynamic PRA or simulation-
based PRA methods. 

These uncertainties and safety methods usually generate 
a large number of simulation runs (database may be on the 
order of gigabytes and higher). The scope of this paper is to 
present a broad overview of methods and algorithms that 
can be used to analyze and extract information from large 
data sets containing time dependent data. By “extracting 
information” we mean the following: construct input-output 
correlations, find communalities and identify outliers. 

Some of the algorithms presented here have been 
developed or are under development within the RAVEN [4] 
statistical framework. 
 
DATA SET FORMAT 

We will indicate with Ξ the original data set which 
contain 𝑁 time series 𝛨$: Ξ = 𝛨&, … , 𝛨), … , 𝛨* .  To 
preserve generality of this paper, we can assume that each 
history 𝛨$ contains three components:  

𝛨$ = 𝜽$, 𝚫$, 𝚪$  (1) 

These components are the following: 
• Continuous data 𝜽$: this data contains the temporal 

evolution of each scenario, i.e., the time evolution of 
the 𝑀 state variables 𝑥0 (𝑚 = 1,… ,𝑀) (e.g., pressure 
and temperature at a specific computational node). All 
these state variables change in time 𝑡 (where 𝑡 ranges 
from 0 to 𝑡$1): 

𝜽$ = 𝑥&$, … , 𝑥4$  (2) 

                                                             
1 This allows us to maintain generality by having time series with different 
time lengths 

where each 𝑥0 is a an array of values having length 𝑇$. 
Hence 𝜽$ can be viewed as a 𝑀×𝑇$ matrix. 

• Discrete data 𝚫$: which contains timing of events. Note 
that a generic event 𝐸8$ can occur: 
o At a time instant 𝑡8: in this case the event can be 

defined as (𝐸8$, 𝑡8), or, 
o Over a time interval 𝑡8;, 𝑡8< : in this case the event 

can be defined as (𝐸8$, 𝑡8;, 𝑡8< ) 
• Set 𝚪$ of boundary conditions 𝐵𝐶?$	(𝑡 = 1, … , 𝑇) and 

initial  conditions 𝐼𝐶B$(𝑠 = 1, … , 𝑆). 
 
DATA PRE-PROCESSING 

This section focuses on the continuous part 𝜽$ of the 
data set Ξ. Depending on the applications, the data set may 
need to be pre-processed. The most common pre-processing 
is the Z-normalization procedure: each element 𝑥0 of 𝜽$ is 
transformed 𝑥′0: 

𝑥′0 =
𝑥0 − 𝑚𝑒𝑎𝑛(𝑥0)
𝑠𝑡𝑑𝐷𝑒𝑣(𝑥0)

 
(3) 

where 𝒎𝒆𝒂𝒏(𝒙𝒎) and 𝒔𝒕𝒅𝑫𝒆𝒗(𝒙𝒎) represent the mean 
and the standard deviation of 𝒙𝒎. 

This transformation provides an equal importance to 
every 𝒙𝒎 and it compensates for amplitude offset and 
scaling effects when distance between time series is 
computed2. 

In case the time-series are affected by noise, it might be 
worth to smooth the time series so that the noise is filtered 
out and the series information is maintained. 
 
DATA REPRESENTATION 

One of the most fundamental modeling choices 
regarding time dependent data is how each time series is 
numerically represented. Reference [] provides a broad 
analysis of the many representation methods which are here 
summarized: 
• Real-valued: the original format of the time series is 

maintained  
• Polynomial: the time series is approximated by a 

polynomial function (e.g., Chebyshev) up to a fixed 
degree and the vector of coefficients are retained as 
representatives for the time series 

                                                             
2 This is in particular relevant when 𝑥0  have different scales (e.g., 
temperatures in the [500,2200] F interval while pressures are in the [0,16 
106] Pa)

  



• Discrete Fourier: similar to the polynomial 
representation, the time series is approximated by a 
Fourier series and the series coefficients are retained as 
representatives for the time series 

• Singular Value Decomposition (SVD): this method 
performs an Eigen-value and Eigen-vector 
decomposition of 𝜽$ and selects a reduced set of Eigen-
vectors. Each time series 𝛨$ is represented by the 
coefficients associated to each Eigen-vector 

• Symbolic: this method performs a symbolic conversion 
of the continuous data 𝜽$. This is accomplished by 
quantizing the time and state variables 𝑥0 and by 
associating to each quantized element a symbol (see 
Fig.1) 

 
Fig. 1. Example of symbolic representation of a time series (blue 
line) into a sequence of symbols through a discretization process in 
both time and amplitude (red blocks) []. The resulting sequence of 
symbols is: baabccdddd. 

MEASURING SIMILARITY 
The second important modeling choice when dealing 

with time series regards the type of similarity metric also 
knows as distance. Similarly to the theory behind distances 
in Euclidean space, a distance metric 𝑑 𝑆, 𝑄  measures the 
“similarity” between two generic objects 𝑆 and 𝑄. The only 
requirement behind 𝑑 𝑆, 𝑇  is that it has to obey the 
following rules: 

		

𝑑 𝑆, 𝑆 = 0
𝑑 𝑆, 𝑄 = 𝑑 𝑄, 𝑆
𝑑 𝑆, 𝑄 = 0		iff		𝑆 = 𝑄
𝑑 𝑆, 𝑄 ≤ 𝑑 𝑆, 𝐾 + 𝑑 𝐾, 𝑄

 (4) 

 When dealing with time series, the following two 
metrics are the most commonly used: 
• Euclidean distance 
• Dynamic Time Warping (DTW) distance 

Both these distances are described in the next two 
subsections for the univariate case, i.e., two time series 𝑄 
and 𝑆 where their continuous part has 𝑀 = 1. The more 
generic case, i.e., multivariate case, can be easily expanded 
from what is shown below. 

 
Euclidean distance 

Given two univariate time series 𝑆 and 𝑄 having 
identical length (i.e., 𝑇 = 𝑇_) the Euclidean distance 
𝑑` 𝑆, 𝑄  is defined as: 

𝑑` 𝑆, 𝑄 = 𝑥&^ 𝑡 − 𝑥&a 𝑡
`

ab

?cd

 (5) 

 
Fig. 2. Euclidean distance metric for two time series 𝑆 and 𝑄. Each 

black segment represents: 𝑥&^ 𝑡 − 𝑥&a 𝑡 . 

DTW Distance 
This distance can be viewed as a natural extension of 

the Euclidean distance applied to time series. Given two 
univariate time series 𝑆 and 𝑄 having length 𝑇 	and 𝑇_ 
respectively3. The distance value 𝑑eaf 𝑆, 𝑄  is calculated 
by following these two steps: 

1. Create a matrix 𝐷 = [𝑑8,h] having dimensionality 
𝑇 ×𝑇_ where each element of 𝐷 is calculated as 
follows: 𝑑8,h = (𝑥&^[𝑖] − 𝑥&

_[𝑗])` for 𝑖 = 1, … , 𝑇   and 
𝑗 = 1, … , 𝑇_. 

2. Search a continuous path 𝑤m &
n in the matrix 𝐷 that, 

starting from (𝑖, 𝑗) = (0,0), it ends at (𝑖, 𝑗) = (𝑇 , 𝑇_) 
and it minimizes the sum of all the 𝐾 elements 𝑤m =
𝑑8,h m

 of this path: 

𝑑eaf 𝑆, 𝑄 = min	 𝑤m

n

mc&

 (6) 

This metric has the advantage of capturing similarities 
between time series that are shifted in time. 
 

                                                             
3 Note that here he we have relaxed the requirement: 𝑇 = 𝑇_  
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Fig. 3. Colored plot of the distance matrix 𝐷 for two time series 𝑆 
and 𝑄 plotted in Fig. 4. Blue line represents the warp path 𝑤m &

n. 

 
Fig. 4. DTW distance metric for two time series 𝑆 and 𝑄. Each 
black segment represents an elements 𝑤m = 𝑑8,h m

 of the warp 
path shown in Fig. 3. 

DATA MINING TECHNIQUES 
For the scope of this article we focused on two 

applications: data searching and clustering. While we 
believe clustering offers the best tools to “extract 
information” from data (see first section of this paper), time 
series searching algorithms allow the user to match time 
series coming from different data sets. 

 
Data Searching 

Data searching algorithms are an important class of data 
analysis tools that can be very useful to compare and 
analyze similarities between two time series data sets (e.g., 
for code validation). In our experience, the two most reliable 
methods are the following: K-Nearest Neighbors (KNN) [] 
and Kd-Tree []. 
 
Clustering 

From a mathematical viewpoint, the concept of 
clustering [] is that we aim is to find a partition 𝑪 =
{𝐶&, … , 𝐶s, … , 𝐶t} of the set of 𝑁 scenarios Ξ =

𝛨&, … , 𝛨), … , 𝛨*  where each scenario 𝛨) is represented as 
shown in (1). Each 𝐶s (𝑙 = 1, … , 𝐿) is called a cluster. The 
partition 𝑪 of 𝑿 is the following one: 

	𝐶s ≠ ∅

	 𝐶s

t

sc&

= Ξ (7) 

Even though the number of clustering algorithms 
available in the literature is large, usually the most 
commonly used ones when applied to time series are the 
following: Hierarchical [], K-Means [] and Mean-shift []. 

Hierarchical algorithms build a hierarchical tree from 
the individual points (leaves) by progressively merging 
them into clusters until all points are inside a single cluster 
(root). Clustering algorithms such as K-Means and Mean-
Shift, on the other hand, seek a single partition of the data 
sets instead of a nested sequence of partitions obtained by 
hierarchical methodologies.  

 
Approach 1 

The first approach we followed is to perform clustering 
time series using classical clustering algorithms (e.g., K-
Means, Mean-Shift and hierarchical) not directly on the time 
series but on the pre-processed data. This can be 
accomplished when one of the above-mentioned 
representations is chosen: polynomial, Fourier, SVD. Each 
time series is represented as a multi-dimensional vector 
where each dimension of the vector represents the 
coefficient of a specific base: polynomial, sin/cos, and 
Eigen-vector decomposition respectively. 

 

 
Fig. 5. Plot of a 1000 time series data set in a 2-dimensional space 

(plus time). 

Approach 2 
The second approach we followed is to reconstruct the 

major clustering algorithms available in the literature (K-
Means, Mean-Shift and Hierarchical) so that they can 
natively perform data analysis on the time series data set. 
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The major challenge in this approach is the need to 
define an operator that given a sub set of time series it 
generates a distance-based average time series. This average 
value can be challenging to obtain especially if DTW 
distance is used.  

An example of a time series application is shown in 
Fig.5: a data set that contained the time evolution of 1000 
series has been generated by randomly changing (through a 
Monte-Carlo sampling) the initial condition. 

 

 
Fig. 6. Plot of the two clusters obtained from the data set shown in 

Fig.5. 

 
Fig. 7. Histograms of the sampled values for Cluster_0 and 
Cluster_1 (shown in Fig. 6) that created them and were captured by 
the clustering algorithm. 

CONCLUSIONS 
In this paper we have presented an overview of 

methods that can be employed to analyze time dependent 
data. We cover all main aspects of a typical analyze ranging 
from data pre-processing, metric choice, data searching and 
clustering. These algorithms have been developed or are 
under current development within the RAVEN statistical 
framework. 
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