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INTRODUCTION 

 
Sensitivity analysis (SA) and uncertainty quantification 

(UQ) are now widely recognized as essential parts of 
analyses for complex nuclear systems. Plenty of well-
established methodologies are already available for 
performing SA & UQ, such as Monte Carlo analysis, 
adjoint-based method, and variance decomposition [1-3].  

The focus of this summary is on developing an efficient 
sampling-based approach to perform SA & UQ through 
RAVEN. RAVEN (Risk Analysis and Virtual control 
ENvironment) is a software framework able to perform SA 
& UQ, currently under development at the Idaho National 
Laboratory [4]. In literature, a number of approaches have 
been developed to accelerate the process of SA & UQ for 
large complex systems, such as principal component 
analysis (PCA) of input space, input-output correlation 
analysis, and intersection subspace methods [5, 6]. The 
fundamental idea is to identify the dominant active 
directions in the parameter space prior to conducting SA & 
UQ. The premise is that the number of active directions is 
much less than the dimensionality of input space. In this 
work, the PCA or Karhunen-Loève expansion or SVD 
method is implemented in RAVEN to identify the active 
directions. This approach is also combined with the forward 
sampling approaches, such as Monte Carlo, Grid, Latin 
Hypercube, and Response Surface Design sampling 
approaches that are currently available in RAVEN, to 
perform SA & UQ more efficiently. 

The summary is organized as follows. In following 
section, we present the PCA-based forward sampling 
approach. The effectiveness and efficiency are discussed in 
numerical results section. The paper then ends with a 
concluding summary. 

 
DESCRIPTION OF THE ACTUAL WORK 
 
Correlations of Input Parameters 

 
In this work, PCA is employed to control the 

correlations of sample generation. The input parameters, 
represented hereinafter by 𝒙 ∈ 𝑹$, are assumed to have a 
multivariate normal distribution with mean 𝝁 and 
covariance matrix 𝐂 ∈ 𝑹$×$, where n is the number of input 
parameters. In order to employ the sampling-based approach 
to perform SA & UQ, we need to transform the set of 
correlated input variables to a set of uncorrelated standard 

Gaussian variables	𝝃 𝜃 = [𝜉. 𝜃 , 𝜉0 𝜃 ,⋯ , 𝜉$ 𝜃 ], 
denoted hereinafter as pseudo parameters, via the following 
equation: 

 
𝒙 = 𝝁 + 𝐋𝛏  (1) 

 
where L is a lower-triangular matrix obtained via the 
Cholesky decomposition of 𝐂 = 𝐋𝐋𝐓. We can also employ 
PCA or singular value decomposition (SVD) in linear 
algebra to perform this transformation,  
 

𝐂 = 𝐔𝚺𝐔𝐓  (2) 
𝒙 = 𝝁 + 𝐔 𝚺𝛏  (3) 

 
where U is n by n real unitary matrix and 𝚺 is n by n 
diagonal matrix with non-negative real numbers. The 
diagonal entries 𝚺𝒊,𝒊 of 𝚺 are known as the singular values of 
𝐂.  

As shown in Eq. (1) or (3), the correlations between 
input parameters are imposed with the matrix 𝐋 or 𝐔 𝚺. In 
Fig. 1, we have provided some illustrative results.  

In some situations, the matrix 𝐂 happens to be ill-
conditioned, such as the covariance matrix for nuclear cross 
sections. In this case, some principal components associated 
with zero or small singular values, usually several orders of 
magnitude smaller than the largest singular values, can be 
neglected, while the rest of the principal components, 
denoted hereinafter as the active directions, can be used to 
perform SA & UQ more efficiently.  
 
PCA-Based Forward Sampling Approach 

 
As mentioned, we have implemented the PCA approach 

in RAVEN, and RAVEN is now able to perform SA & UQ 
with the pseudo parameters in the active directions. The 
main procedures can be illustrated as follows: 

1. Define the multivariate normal distribution 𝒩(𝝁, 𝐂) 
that characterizes the uncertainty in the input parameters 
𝑥> >?.

$  or 𝒙; 
2. Identify the active directions via truncated SVD of 

input covariance 𝐂, i.e. 𝐂 = 𝐔𝐭𝚺𝐭𝐔𝒕𝐓, with 𝐔𝐭 ∈ 𝑹𝒏×𝒓 and 
𝚺𝐭 ∈ 𝑹𝒓×𝒓; 

3. Define the pseudo parameters 𝜉> >?.
D  or 𝝃 with 

standard normal distributions 𝒩. 0,1 ,⋯ ,𝒩D(0,1); 
4. Draw a sample 𝝃> >?.

G  from the distributions defined 
in step 3. Several methods available in RAVEN can be used 



here, such as random sampling, Latin hypercube sampling 
and sparse grid collocation sampling;  

5. Generate a sample of input parameters 𝒙> >?.
G  via the 

mapping: 𝒙> = 𝝁 + 𝐔𝐭 𝚺𝐭𝝃>, 𝑖 = 1,⋯ , 𝑁; 
6. Propagate the sample through the computational code 

to produce responses of interest 𝒚> = 𝒚 𝒙> >?.
G ; 

7. Construct a reduced order model (ROM) via methods 
such as response surface, generalized polynomial chaos, and 
high-dimensional model reduction (HDMR); 

8. Perform the UQ in the responses of interest;  
9. Perform the sensitivity analysis in the responses of 

interest with respect to the pseudo parameters via regression 
method, i.e. 𝐒 = 𝒅𝒚

𝒅𝒙
; 

10. Compute the sensitivities of responses of interest 
with respect to input parameters: 𝐔𝐭 𝚺𝒕 𝐒. 
 
 

 
0.0 Correlation between two standard normal distributions  

 

 
0.5 Correlation between two standard normal distributions  

 
0.99 Correlation between two standard normal distributions  
 
Fig. 1. Examples of correlations of 0.0, 0.5, and 0.99 
imposed with the proposed technique for an LHS of size 
𝑁 = 1000. 
 
NUMERICAL RESULTS 
 

In this section, we present the results of the application 
of the proposed approach to IAEA-2D PWR benchmark [7]. 
The numerical solution of this benchmark is computed via 
RATTESNAKE [8]. Several methods inside RAVEN are 
used to perform SA & UQ, such as Monte Carlo and 
HDMR. For this study, we have introduced 5% relative 
uncertainties, i.e. 𝜎/𝐸 = 5%, in capture, scattering, fission 
cross-sections, and neutron multiplication factor 𝜈. In 
addition, we have introduced 10% correlation between the 
energy group cross sections for each type of perturbed cross 
section in each material.  

In Fig. 2, we present the contributions of variance in k-
eigenvalue due to the size of the active directions for both 
HDMR and Monte Carlo methods. As observed, only few of 
the active directions together have the majority of 
contributions to the total variance. In addition, Fig. 3 and 
Fig. 4 illustrate the sensitivity coefficients of k-eigenvalue 
with respect to the pseudo parameters computed via 
regression method and HDMR (Sobol’ indices) method. 
This information can then be used to re-construct the real 
sensitivity coefficients via step 10 in previous section. If 
other methods, such as response surface and sparse grid 
collocation with generalized polynomials chaos method, are 
employed, RAVEN can construct the ROM as mentioned in 
the step 7 in previous section. In this case, the ROM can be 
used to perform SA & UQ much more efficiently compared 
to the executions of original complex model. Currently, we 
are focusing on examination of the proposed method for 
multi-physics coupled systems, such as fuel-neutronics 
coupled system.    



 
Fig. 2. Contributions of variance from the active directions 
 

 
Fig. 3. Sensitivities from regression method with Monte 
Carlo sampling. 
 

 
Fig. 4. First-order Sobol’ indices using HDMR method. 

 
 

 
CONCLUSIONS 

 
In this summary, we have presented PCA-based 

forward sampling approach to perform SA & UQ. The goal 
is to reduce the computational overhead for repetitive 
executions of complex nuclear systems that are generally 
required when performing SA & UQ. The control of 
correlations between input parameters is implemented in 
RAVEN to better represent the input relationships. In 
addition, we are currently examining our implementations 
with more realistic models, and we are also focusing on 
implementation some new high-dimensional input reduction 
techniques in RAVEN.  
 
REFERENCES  
 
1.  J. C. Helton, F. J. Davis, “Latin Hypercube Sampling and 
the Propagation of Uncertainty in Analyses of Complex 
Systems,” Reliab. Eng. Syst. Safety, 81, p. 23-69 (2003). 
2. D. G. Cacuci, Sensitivity and Uncertainty Analysis, vol. 
1: Theory, Chapman & Hall/CRC Press, Boca Raton, FL 
(2003). 
3. I. M. Sobol, “Global Sensitivity Indices for Nonlinear 
Mathematical Models and Their Monte Carlo Estimates,” 
Mathematics and Computers in Simulation, 55, p. 271-280 
(2001). 
4. C. Rabiti, A. Alfonsi, J. Cogliati, D. Mandelli and R. 
Kinoshita, “Reactor Analysis and Virtual Control 
Environment (RAVEN),” Tech. Rep. INL/EXT-12-27351, 
Idaho National Laboratory (INL) (2012). 
5. M. A. Jessee, H. S. Abdel-Khalik, and P. J. Turinsky, 
“Evaluation of BWR Core Attributes Uncertainties Due to 
Muliti-Group Cross-Section Uncertainties,” Proc. M&C + 
SNA 2007, Monterey, California, April 15-19, 2007, 
American Nuclear Society (2007) (CD-ROM). 
6. C. Wang and H. S. Abdel-Khalik, “CRANE: A New 
Scale Super-Sequence for Neutron Transport Calculations,” 
Proc. ANFM 2015, Hilton Head Island, South Carolina, 
March 29 – April 1, 2015, American Nuclear Society (2015) 
(CD-ROM) 
7. I. Misfeldt, “2D IAEA Benchmark Problem,” Tech. Rep. 
NEACRP-L-138, Danish Atomic Energy Commission, 
(1975). 
8. F.N. Gleicher II, Y. Wang, D. Gaston, and R. C. 
Martineau, “The Method of Manufactured Solutions for 
RattleSnake, A SN Radiation Transport Solver inside the 
MOOSE Framework,” proc. Am. Nuc. Soc., Chicago, IL 
(2012). 
 
 


