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ABSTRACT 

 

The RISMC project aims to develop new advanced simulation-based tools to perform 
Computational Risk Analysis (CRA) for the existing fleet of U.S. nuclear power plants 
(NPPs). These tools numerically model not only the thermal-hydraulic behavior of a 
reactor primary and secondary systems but also external event temporal evolution and 
component/system ageing. Thus, this is not only a multi-physics problem but also a 
multi-scale problem (both spatial, μm-mm-m, and temporal, ms-s-minutes-years). As part 
of the RISMC CRA approach, a large amount of computationally expensive simulation 
runs may be required. In addition, these uncertainties and safety methods usually generate 
a large number of simulation runs (database storage may be on the order of gigabytes or 
higher). During the FY2016, we investigated, implemented and applied several methods 
and algorithms to analyze these large amounts of time-dependent data. The scope of this 
report is to present a broad overview of methods and algorithms that can be used to 
analyze and extract information from large data sets containing time dependent data. In 
this context, “extracting information” means constructing input-output correlations, 
finding commonalities, and identifying outliers. Some of the algorithms presented here 
have been developed or are under development within the RAVEN statistical framework. 

. 
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Data Analysis Approaches for the  

Risk-Informed Safety Margins Characterization Toolkit 

 

 
 

1. INTRODUCTION 
In the Risk Informed Safety Margin Characterization (RISMC) [1] approach, what we want to understand is 

not just the frequency of an event like core damage, but how close we are (or not) to key safety-related events 
and how might we increase the safety margin.  A safety margin can be characterized in one of two ways: 

 A deterministic margin, typically defined by the ratio (or, alternatively, the difference) of a capacity (i.e., 
strength) over the load 

 A probabilistic margin, defined by the probability that the load exceeds the capacity. A probabilistic safety 
margin is a numerical value quantifying the probability that a safety metric (e.g., for an important process 
observable such as clad temperature) will be exceeded under accident scenario conditions. 

The RISMC Pathway uses the probabilistic methods to determine safety margins and quantify their impacts 
to reliability and safety for existing Nuclear Power Plants (NPPs), i.e., pressurized and boiling water reactors 
(PWRs and BWRs). As part of the quantification, we use both probabilistic (via risk simulation) and 
mechanistic (via system simulators) approaches, as represented in Figure 1. Probabilistic analysis is represented 
by the risk analysis while mechanistic analysis is represented by the plant physics calculations. In the plant 
simulation, all the deterministic aspects that characterize system dynamics (e.g., thermo-hydraulic, thermo-
mechanics, neutronics) are coupled to each other. 

The risk simulation contains all deterministic elements that impact accident evolution such as: 

 Safety systems control logic 

 Accident scenario initial and boundary conditions 

In addition to stochastic ones such as: 

 System/component failures 

 Stochastic perturbation of internal elements of the physics simulation 

The stochastic analysis [2] is performed in two steps: 

1. Sampling the stochastic parameters, and 

2. Evaluating the system response for the given set of sampled parameters 

In the RISMC applications, system simulator codes model not only plant thermal-hydraulic, thermal-
mechanic, neutronics and ageing behavior but also model external event and human interactions with the plant 
itself. This is not only a multi-physics problem (i.e., different sets of equations are solved) but also a multi-scale 
one (i.e., both temporal and spatial scales). The drawback is that a single plant accident analysis (e.g., prediction 
of the seismic response of a BWR that underwent to a 60 years life extension license) might require long 
computational time that grows exponentially if multiple runs (through the sampling process) are needed. 
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Figure 1. The approach used to support RISMC analysis. 

This report completes another step in the development of the RISMC approach to measure risk associated to 
nuclear power plants using state of the art methods and algorithms. In contrast to state of practice approaches to 
measure risk which evaluate accident progression using static Boolean logic structures (e.g., Event-Trees, Fault-
Trees), the RISMC approach heavily employs system simulators (to evaluate accident progression) coupled with 
stochastic analysis tools (to alter timing and sequencing of events).  

In the past years, the development of the RISMC approach has covered the following topics 

 Application of RISMC simulation based PRA methods on a BWR SBO test case [3] 

 Comparisons of RISMC simulation based PRA against state of practice methods [4] 

 Employment of reduced order model techniques [5] to reduce computation costs of RISMC simulation 
based PRA methods 

During this fiscal year, we have developed several methods and algorithms to analyze the large amount of 
simulations generated. Classical statistical methods are in fact inadequate to analyze complex time-dependent 
data sets. This report summarizes the development and testing of these methods. 

 

 

1.1 Structure of the report 
This report is structured as follows: 

 Section 2 provides an overview of the RISMC project, the RISMC toolkit and, in particular, of the 
RAVEN statistical framework 

 Section 3 offers a general overview of data mining 

 Section 4 provides a more detail overview of the algorithms and methods available from a data mining 
point of view 

 Section 5 shows the challenges related to data mining associated to time-dependent data 
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 Section 6 gives a broad and detailed overview of the data analysis capabilities of RAVEN 

 Section 7 presents several test cases in order to demonstrate the validity of RAVEN as a data analysis 
tools 

 Section 8 shows how advanced data visualization techniques can be employed to analyze complex data 
sets 

 Section 9 presents a set of conclusions and final considerations 
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2. RISMC OVERVIEW 
 

The RISMC approach employs both deterministic and stochastic methods in a single analysis framework 
(see Figure 2). In the deterministic method set we include: 

 Modeling of the thermal-hydraulic behavior of the plant [6] 

 Modeling of external events such as flooding [7] 

 Modeling of the operators responses to the accident scenario [8] 

Note that deterministic modeling of the plant or external events can be performed by employing specific 
simulator codes but also surrogate models [5], known as reduced order models (ROM). ROMs would be 
employed in order to decrease the high computational costs of employed codes. In addition, multi-fidelity codes 
can be employed to model the same system; the idea is to switch from low-fidelity to high-fidelity code when 
higher accuracy is needed (e.g., use low-fidelity codes for steady-state conditions and high-fidelity code for 
transient conditions) 

In the stochastic modeling we include all stochastic parameters that are of interest in the PRA analysis 
such as: 

 Uncertain parameters 

 Stochastic failure of system/components 

 
Figure 2. Overview of the RISMC modeling approach. 

As mentioned earlier, the RISMC approach heavily relies on multi-physics system simulator codes (e.g., 
RELAP-7 [9]) coupled with stochastic analysis tools (e.g., RAVEN [10]).  From a PRA point of view, this type 
of simulation can be described by using two sets of variables: 

 ࢉ ൌ  ሻ represents the status of components and systems of the simulator (e.g., status of emergency coreݐሺࢉ
cooling system, AC system) 

Stochastic analysis 

 

Sample the pdfs  

Run N times system 
simulation code(s) 

Evaluate desired FOMs 

Deterministic modeling 

 

Plant modeling 

External event modeling 

Stochastic modeling 

 

Identify uncertain parameters 
and associate a pdf 

Data post-processing 
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 ࣂ ൌ  ሻ represents a singleݐሺࣂ ,.ሻ represents the temporal evolution of a simulated accident scenario, i.eݐሺࣂ
simulation run. Each element of ࣂ can be for example the values of temperature or pressure in a specific 
node of the simulator nodalization. 

From a mathematical point of view, a single simulator run can be represented as a single trajectory in the 
phase space. The evolution of such a trajectory in the phase space can be described as follows: 

൞

ሻݐሺࣂ߲

ݐ߲
ൌ ऒሺࣂ, ,࢙ ,ࢉ ሻݐ

ሻݐሺࢉ߲

ݐ߲
ൌ ऍሺࣂ, ,࢙ ,ࢉ ሻݐ

 (1) 

where: 

 ऒ is the actual simulator code that describes how ࣂ evolves in time 

 ऍ is the operator which describes how ࢉ evolves in time , i.e., the status of components and systems at 
each time step 

 ܛ is the set of stochastic parameters. 

Starting from the system located in an initial state, ࣂሺݐ ൌ 0ሻ ൌ  ሺ0ሻ, and the set of stochastic parametersࣂ
(which are generally generated through a stochastic sampling process), the simulator determine at each time step 
the temporal evolution of ࣂሺݐሻ. At the same time, the system control logic1 determines the status of the system 
and components ࢉሺݐሻ. The coupling between these two sets of variables is shown in Figure 3. 

 

Figure 3. Relationship between simulator phisics code (H) and control logic (C). 

By using the RISMC approach, the PRA analysis is performed by [3]: 

1. Associating a probabilistic distribution function (pdf) to the set of parameters ࢙ (e.g., timing of events) 

2. Performing stochastic sampling of the pdfs defined in Step 1 

3. Performing a simulation run given ࢙ sampled in Step 2, i.e., solve the system of equations (1) 

4. Repeating Steps 2 and 3 M times and evaluating user defined stochastic parameters such as core damage 
(CD) probability ( ஼ܲ஽). 

 

                                                      

1 Which is usually integral part of the system simulator 
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2.1 RISMC toolkit 
In order to perform advanced safety analysis, the RISMC Pathway has a toolkit that was developed at INL 

using MOOSE [11] as the underlying numerical solver framework. This toolkit consists of the following 
software tools (see Figure 4): 

 RELAP-7 [9]: the code responsible for simulating the thermal-hydraulic dynamics of the plant. 

 RAVEN [10] (see Section 2.2): it has two main functions: 1) act as a controller of the RELAP-7 
simulation and 2) generate multiple scenarios (i.e., a sampler) by stochastically changing the order and/or 
timing of events. 

 PEACOCK: the Graphical User Interface (GUI) that allows the user to create/modify input files of both 
RAVEN and RELAP-7. Also, it monitors the simulation in real time while it is running. 

 GRIZZLY [12]: the code that simulates the thermal-mechanical behavior of components in order to model 
component aging and degradation. Note that for the analysis described in this report, aging was not 
considered. 

 

Figure 4. Overview of the RISMC toolkit. 

 

2.2 RAVEN Statistical framework  

RAVEN (Risk Analysis and Virtual control ENviroment) is a software framework that allows the user to 
perform generic statistical analysis. By statistical analysis we include: 

 Sampling of codes: either stochastic (e.g., Monte-Carlo [13] and Latin Hypercube Sampling [14]) or 
deterministic (e.g., grid and Dynamic Event Tree [15]) 

GRIZZLY 

PEACOCK 
RAVEN 

RELAP‐7 

Others 
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 Generation of Reduced Order Models [16] also known as Surrogate models 

 Post-processing of the sampled data and generation of statistical parameters (e.g., mean, variance, 
covariance matrix) 

Figure 5 shows a general overview of the elements that comprise the RAVEN statistical framework: 

 Model: it represents the pipeline between input and output space. It comprises both codes (e.g., RELAP-7) 
and also Reduced Order Models  

 Sampler: it is the driver for any specific sampling strategy (e.g., Monte-Carlo, LHS, DET) 

 Database: the data storing entity 

 Post-processing module: module that performs statistical analyses and visualizes results 

 

Figure 5. Scheme of RAVEN statistical framework components. 

 

2.2.1 CROW Library 

CROW is an INL developed C++ library which contains the full set of probabilistic functions which are 
used by RAVEN to perform any kind of statistic analysis. It contains the following modules: 
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 Interface with BOOST [17]. BOOST2 is a set of libraries for the C++ programming language that provide 
support for tasks and structures such as linear algebra, pseudorandom number generation, multithreading, 
image processing, regular expressions, and unit testing. For our applications we are using the 
mathematical/statistical 3  library of BOOST which contains a wide selection of univariate statistical 
distributions and functions that operate on them (pdf and cdf calculation along with random number 
generation). 

 Multi-variate distributions. This module contains the same functions mentioned above (pdf and cdf 
calculation along with random number generation) but applied to multi-variate distributions. Not only 
multi-variate normal distributions are modeled but also generic multi-variate distributions defined over a 
set of samples scattered or grid distributed. 

 

  

                                                      

2 http://www.boost.org/ 
3 http://www.boost.org/doc/libs/1_58_0/libs/math/doc/html/dist.html  
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3. DATA MINING 
 

Data mining is a fairly generic concept that entails the generation of information/knowledge from data sets.  
The process of generation of information/knowledge can be performed in various ways depending on the type of 
application but it possible to classify all data analysis approaches into four categories:  

 Reduced Order Modeling (ROM): ROM algorithms aim to reduce to the complexity of the data by finding 
a mathematical objects that emulate the behavior of the data by learning its input/output relations and 
reconstructing such relations through a regression/interpolation based approach 

 Dimensionality reduction: this category includes all methods than aim to reduce the dimensionality of the 
data set and project the original data into a reduced space 

 Clustering: algorithms in this category partition the data based on a set of defined similarity measures 

 Data searching: identify the closest data point in a database given a reference point. Once that point has 
been found it is possible to infer properties of the reference point 

In [5] we focused the development directly on the first two categories using RAVEN and we showed several 
applications that are of interest in the RISMC project. This report focuses on the third step of the RISMC 
method (see Figure 6): data clustering post-processing (in particular time-dependent data mining) and data 
visualization.  

 

 

Figure 6. Overview of how data analysis techniques can be applied to the 4 main steps of a typical RISMC 
analysis. 
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Reference [18] shows the development of the basic data mining capabilities. These capabilities were 
introduced in RAVEN using the scikit-learn4 library (often called sklearn). Scikit-learn is open source software 
machine-learning library for the Python. It includes classification, regression and clustering algorithms including 
support vector machines, Gaussian process models, PCA, K-Means and Mean-Shift, and is designed to 
interoperate with the Python numerical and scientific libraries NumPy and SciPy. 

Since [18] focused on static (i.e., non time-dependent data), during the FY16 the RAVEN development 
focused on the time-dependent data-mining. This development moved in two parallel directions: 

1. Extension of existing data-analysis methods by performing them at specific time instants: the time series 
are sampled at specific time instants and data-mining algorithms are performed on the data set (which is 
static in nature) specific at each specific time instant 

2. Development of new algorithms and extension of existing clustering methods to analyze time series as a 
whole: each time series is considered as a whole data point and the resulting data mining approach takes 
care of the full temporal profile of the time histories. 

While the results obtained in the first direction are shown in [19], the second path is described in detail in this 
report. 

The range of applications that are of interest from an engineering point of view (and, hence, not limited to a 
typical RISMC application) are the following: 

 Analysis of data input-output relationship: this is the most relevant application within the RISMC project, 
i.e., the identification of the connection between input parameters (which are stochastically sampled) and 
the full temporal profile of the simulation. Using the system of equation (1), we want to create a 
correlation between ࢙ and ࣂሺݐሻ. While it is trivial to make a connection between input sampled parameters 
and static output parameters, such as max clad temperature or average fluid speed, it gets tougher when 
we want to consider the full temporal profile of the simulation 

 Outlier identification: due to numerical limitations of system simulator codes (e.g., range of validity for 
correlations), the outcome of a subset of simulation runs may contain wrong results. When these 
limitations are reached, the temporal profile may contain anomalous behaviors. The objective of data 
mining would be to identify these anomalous behaviors, i.e. outliers. This would dramatically increase the 
quality of the data being generated/analyzed 

 Diagnosis/prognosis: while this application is not referenced in detail in this work, it is worth highlighting 
that all data mining methods presented in this work can be used in an operating environment to assist 
reactor operators to assess plant conditions and possible plant evolutions during an accident scenario. The 
basic idea would be use a large set of simulations generated for different accident conditions as a database 
with the objective to constantly match the actual plant status. Once a match has been established (i.e., a set 
of simulated scenarios match closely enough5 the actual and past plant status) the operators can now: 

o identify the possible causes that is generating the abnormal behavior in the plant (diagnosis) 

o predict possible future evolutions of the accident scenarios (prognosis) 

Thus at this point the operators have a tool that can provide risk-informed insights regarding task 
management and resources prioritization during accident scenarios.  

In this respect the following major capabilities have been added to the actual RAVEN code (see Figure 7): 

                                                      

4 http://scikit-learn.org/stable/ 
5 This matching can be analytically performed using distance metrics that are described in Section 6.3 
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 Time dependent metrics: this block features a set of similarity measures (i.e., distance metrics) for time 
dependent data such as Euclidean distance and Dynamic Time Warping [20]. If needed, the user can uses 
RAVEN APIs to develop their own custom distance metrics 

 Interfaced post-processor: this class of custom made post-processors allowed the user to develop its own 
multi-purpose generic processors (through a set of APIs) that can be directly employed internally in 
RAVEN. Several of these post-processors have been developed to manipulate time-dependent data 

 Pre-Processing methods: with this feature the user can perform data pre-processing of the time-dependent 
data prior data mining 

 Agglomerative clustering: agglomerative clustering is the basic hierarchical clustering available within 
sklearn 

 SciPy hierarchical: in parallel to sklearn we have developed an interface with clustering algorithms 
available in SciPy. In particular we were interested into the hierarchical clustering algorithms here 
available. Compared to the sklearn version of the algorithm (see item above), the SciPy version allows the 
user to visualize and explore the hierarchical structure of the data: the dendrogram. 

 

 

Figure 7. Data mining capabilities in RAVEN: portion added in FY16 and presented in this report is 
highlighted in red. 
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4. DATA MINING FRAMEWORK 
 

In order to maintain the same standard throughout the report, we introduce here the set of mathematical 
symbols and terminology. The types of data that are considered in this report are exclusively numerical data6, 
i.e. data which consists of numbers of any format (integer or double). Given this, we can represent a generic data 
set Ξ as a collection (i.e., a set) of ܰ objects: 

Ξ ൌ ሼܪଵ, ,ଶܪ … ,  ேሽ (2)ܪ

Each object ܪ௡ ሺ݊ ൌ 1,… , ܰሻ lies in a multi-dimensional space ܪ :࣢௡ ∈ ࣢ and Ξ ⊂ ࣢. From now on we will 
consider ࣢ as a metric space [21]: ࣢is a space where it is possible to define an arbitrary distance function, i.e., 
a metric (see Section 4.1). 

Since we are dealing with numerical data in a multi-dimensional space we can say that ࣢ ⊂ Թ஽ where ܦ is 
the dimensionality of the space: 

௡ܪ ൌ ሾܪ௡ଵ,… , …,௡ௗܪ ,  ௡஽ሿ (3)ܪ

We will indicate with ݔௗ	ሺ݀ ൌ 1,… , ݀	ሻ each coordinateܦ  of ࣢ ⊂ Թ஽ . Thus, each element ܪ௡ௗ  of ܪ௡  is the 
݀	coordinate, i.e. dimension ݔௗ, ሺ݀ ൌ 1,… ,  .௡ܪ ሻ of the objectܦ

In the next sections we will describe in detail the basic concepts that are part of any type of data-mining 
activity. 

 

4.1 Metrics 
The similarity criterion is distance. Two or more objects belong to the same cluster if they are “close” 

according to a specified distance. The approach of using distance metrics to clustering is called distance-based 
clustering and it is used in this work. The notion of distance implies that the data points lay in a metric space 
[21]: 

Definition, Metric Space: metric space is a space ܺ provided with a function ߜሺ. , . ሻ:		࣢ ൈ࣢ → Թ satisfying 
the following properties ∀	ܪଵ, ଶܪ ∈ ࣢ : 

 ߜሺܪଵ, ଶሻܪ ൒ 0 

 ߜሺܪଵ, ଶሻܪ ൌ ݀ሺܪଶ,  ଵሻܪ

 ߜሺܪଵ, ଶሻܪ ൑ ,ଵܪሺߜ ଷሻܪ ൅ ,ଷܪሺߜ ∀    ଶሻܪ ଷܪ ∈ ࣢ 

The function ߜሺܪଵ, ଶሻܪ ൒ is usually called the distance function. In a 2-dimensional Euclidean space (Թଶ), 
the distance between points can be calculated using the Pythagorean theorem which is the direct application of 
the Euclidean distance ߜଶሺܪଵ,  :ଶሻ and it is a special case of the most general Minkowski distanceܪ

ଶሻܪ,ଵܪଶሺߜ ൌ ටሺܪଵ
ଵ െ ଶܪ

ଵሻଶ ൅ ሺܪଵ
ଶ െ ଶܪ

ଶሻଶ (4) 

between two points ܪଵ ൌ ሾܪଵ
ଵ, ଵܪ

ଶሿ and ܪଶ ൌ ሾܪଶ
ଵ, ଶܪ

ଶሿ in Թଶ. 

In the literature [22], it is possible to find several types of distances other than the Euclidean and the 
Minkowski distance as shown in Table 1. The approach of using distance metrics is called distance-based 

                                                      

6 As opposed to symbolic data, i.e., data which contains symbols (e.g., letters) 
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clustering and will be used in this work. 

Table 1. Summary of the commonly used dissimilarity measures7 

Measure Form 

Minkowski ߜ௡ሺܪଵ, ଶሻܪ ൌ ඩ෍หܪଵ
௞ െ ଶܪ

௞ห
௡

௄

௞ୀଵ

೙

 

Euclidean ߜଶሺܪଵ, ଶሻܪ ൌ ඩ෍หܪଵ
௞ െ ଶܪ

௞ห
ଶ

௄

௞ୀଵ

 

Taxicab ߜଵሺܪଵ, ଶሻܪ ൌ ෍หܪଵ
௞ െ ଶܪ

௞ห

௄

௞ୀଵ

 

Supremum ߜ଴ሺܪଵ, ଶሻܪ ൌ max
௞

หܪଵ
௞ െ ଶܪ

௞ห 

Mahalanobis8 ߜெሺܪଵ, ଶሻܪ ൌ ሺܪଵ െ ଵܪଶሻ்ܵିଵሺܪ െ  ଶሻܪ

 

 

4.2 Data Pre-Processing 
The raw data simulated or gathered by any monitoring device often requires manipulation depending on the 

type of application. This type manipulation can involve the following operations: 

 Variable selection. This step consists of the identification of the variables that are considered 
useful/relevant for the characterization of the data. For a transient in a nuclear plant, these variables may 
be both process variables such as temperature, pressure or level in specific points of the system and 
hardware/software/firmware states  

 Data representation. In this step the user decides on how to structure the information content of each data 
point, i.e., it defines the “real-world” information content for each element ܪ௡,ௗ (e.g., for transients of 
nuclear power plants an element ܪ௡,ௗ  could represent the maximum clad temperature of the hottest 
channel in the RELAP5 nodalization). This step and the previous one specify the dimensionality ܦ of the 
data space ܺ 

 Data normalization. This steps address the issue that dimensions of the data space ܺ are characterized by 
different scales. If this is the case, dimension with higher scales can bias the analysis if the chosen metric 
provide same importance to each dimension of ܺ . Two classical methods are used to perform data 
normalization: 

o Feature Scaling Normalization: this normalization brings all values ܪ௜,௝ in the range ሾ0,1ሿ interval 

                                                      

7 The measures in this table refers to two ܦ-dimensional vectors ܪଵ ൌ ,ଵ,ଵܪൣ … , ,ଵ,ௗܪ … , ଶܪ ଵ,஽൧ andܪ ൌ ,ଶ,ଵܪൣ … , ,ଶ,ௗܪ … ,  ଶ,஽൧ܪ
8 ܵ refers to the covariance matrix. This implies that the covariance matrix needs to be computed prior determining ߜெሺܪଵ,ܪଶሻ. This can 
causes problems, from a computational efficiency point of view, if the data set changes (i.e., data points are added or removed) 
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௜,௝ܪ
௡௢௥௠ ൌ

௜,௝ܪ െ min
௝
ሺܪ௜,௝ሻ

max
௝
൫ܪ௜,௝൯ െ min

௝
ሺܪ௜,௝ሻ

 (5) 

o Z-Normalization: this normalization (also known as standard score normalization) transforms the data 
to have zero mean and unit variance: 

௜,௝ܪ
௡௢௥௠ ൌ

௜,௝ܪ െ mean
௝

ሺܪ௜,௝ሻ

stdDev
௝

ሺܪ௜,௝ሻ
 (6) 

where the operators mean
௝

ሺ. ሻ and stdDev
௝

ሺ. ሻ  calculate the mean and the standard deviation along 

dimension ݆  respectively. 

 

4.3 Clustering 
From a mathematical viewpoint, given a data set Ξ , clustering [23] aims to find a partition ࡯ ൌ

ሼܥଵ, … , ,௟ܥ … , ݈) ௟ܥ ௅ሽ of Ξ where eachܥ ൌ 1,… ,   :is such that ࡯ is called a cluster. The partition (ܮ

൞

௟ܥ ് ∅ ∀݈ ൌ 1,… , ܮ

ራܥ௟

௅

௟ୀଵ

ൌ Ξ
 (7)

Even though the number of clustering algorithms available in the literature is large, usually the most used 
ones when applied to time series are the following: Hierarchical [24], K-Means [25] and Mean-shift [26]. 

Hierarchical algorithms build a hierarchical tree from the individual points (leaves) by progressively merging 
them into clusters until all points are inside a single cluster (root). Clustering algorithms such as K-Means and 
Mean-Shift, on the other hand, seek a single partition of the data sets instead of a nested sequence of partitions 
obtained by hierarchical methodologies.  

 

4.4 Algorithms 
In this section we present in more detail a portion of the clustering algorithms that have been here 

employed: 

 Hierarchical (see Section 4.4.1) 

 K-Means (see Section 4.4.2) 

 Mean-Shift (see Section 4.4.3) 

 DBSCAN (see Section 4.4.4) 

 

4.4.1 Hierarchical 

The hierarchical clustering is, along with the K-Means one (see Section 4.3.1), the most basic clustering 
algorithms available in literature. Hierarchical algorithms organize data into a structure according to a proximity 
matrix in which each element ሺ݆, ݇ሻ is some measure of the similarity (or distance) between the items to which 
row ݆  and column ݇  correspond. Usually, the final result of these algorithms is a binary tree, also called 
dendrogram, in which the root of the tree represents the whole data set and each leaf is a data point.  
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To show how hierarchical clustering works we will employ the data set pictured in Figure 8, i.e., a data set 
containing about one hundred points in a 2-dimensional space.  

 

Figure 8.  Example of static data scatter plot. 

Given a set of ܰ items to be clustered, and a ܰ ൈ ܰ distance (or dissimilarity) matrix, the basic steps behind 
hierarchical clustering are the following: 

1. Assign each data point to a cluster, i.e., from ܰ data points, ܰ clusters are initialized, each cluster contains 
just one data point. The distances among each cluster is the same as the distances between the data points 
they contain 

2. Determine the closest pair of clusters and merge them into a single cluster 

3. Determine the distances between the new cluster (obtained in Step 2) and the remaining clusters. 

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size ܰ 

Step 3 can be done in different ways, which is what distinguishes single-linkage from complete-linkage and 
average-linkage clustering. 

 Single-linkage clustering (also called the connectedness or minimum method), we consider the distance 
between one cluster and another cluster to be equal to the shortest distance from any member of one 
cluster to any member of the other cluster. If the data consist of similarities, we consider the similarity 
between one cluster and another cluster to be equal to the greatest similarity from any member of one 
cluster to any member of the other cluster. 

 Complete-linkage clustering (also called the diameter or maximum method), we consider the distance 
between one cluster and another cluster to be equal to the greatest distance from any member of one 
cluster to any member of the other cluster. 

 Average-linkage clustering, we consider the distance between one cluster and another cluster to be equal 
to the average distance from any member of one cluster to any member of the other cluster. 
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The ܰ ൈ ܰ distance matrix is ܦ	 ൌ 	 ሾ݀ሺ݅, ݆ሻሿ. The clusterings are assigned sequence numbers 0,1, … , ݊ െ 1 
and ܮሺ݇ሻ is the level of the kth clustering. A cluster with sequence number m is denoted (m) and the proximity 
between clusters ሺݎሻ and ሺݏሻ is denoted ݀ሾሺݎሻ, ሺݏሻሿ. 

The algorithm is composed of the following steps: 

1. Begin with the disjoint clustering having level ܮሺ0ሻ ൌ 0	 and sequence number ݉	 ൌ 	0. 

2. Find the least dissimilar pair of clusters in the current clustering, say pair ሺݎሻ, ሺݏሻ, according to 

݀ሾሺݎሻ, ሺݏሻሿ ൌ ݉݅݊ ݀ሾሺ݅ሻ, ሺ݆ሻሿ (8) 

where the minimum is over all pairs of clusters in the current clustering. 

3. Increment the sequence number: ݉ ൌ ݉ ൅ 1. Merge clusters ሺݎሻ and ሺݏሻ into a single cluster to form the 
next clustering m. Set the level of this clustering to 

ሺ݉ሻܮ 	ൌ 	݀ሾሺݎሻ, ሺݏሻሿ 

4. Update the proximity matrix, ܦ, by deleting the rows and columns corresponding to clusters ሺݎሻ and ሺݏሻ 
and adding a row and column corresponding to the newly formed cluster. The proximity between the new 
cluster, denoted ሺݎ,  :ሻ and old cluster ሺ݇ሻ is defined in this wayݏ

݀ሾሺ݇ሻ, ሺݎ, ሻሿݏ ൌ ݉݅݊ ݀ሾሺ݇ሻ, ሺݎሻሿ, ݀ሾሺ݇ሻ, ሺݏሻሿ (9) 

5. If all objects are in one cluster, stop. Else, go to step 2. 

Figure 9 shows the dendrogram of the data points of Figure 8 while Figure 10 is a plot identical to Figure 9 
where data points are colored based on the label associated to the chosen threshold level (i.e., 22). Note that the 
dendrogram clearly indicates three clusters. 

 

Figure 9. Dendrogram obtained by RAVEN for the data set shown in Figure 8. 
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Figure 10. Scatter plot of the data set shown in Figure 8 colored by the label values obtained by the 
hierrachical algorithm (see Figure 10). 

 

4.4.2 K-Means 

The K-Means algorithms [25] is probably the most simple clustering algorithm. The basic idea is to 
determine ܭ centers (ܭ is provided as an input variable) ߵ௞	ሺ݇ ൌ 1,… ,  ሻ: one center for each cluster. At theܭ
beginning these centers are placed randomly in the feature space. The  next  step is to take each point of the data 
set and associate it to the nearest center ߵ௞. At this point the centers ߵ௞ are re-calculated as average of the data 
points associated to ߵ௞. This data points and centers average step is repeated. As a result of this loop, the ܭ 
centers change their location step by step until no more changes are done or, in other words, centers do not move 
any more. 

It can be shown that this algorithm aims to minimize the squared error function ࣦ: 

ࣦ ൌ ෍෍൫ߜଶሺܪ௡, ௞ሻ൯ߵ
ଶ

ே

௡ୀଵ

௄

௞ୀଵ

 (10) 

where: 

 ܰ and ܭ refers to the cardinality of the data set and of the cluster centers respectively 

 ߜଶሺܪ௡,  ௞ߵ ௡ andܪ ௞ሻ refers to the Euclidean distance betweenߵ

In mode details, given a dataset Ξ ൌ ሼܪ௡ሽ	ሺ݊ ൌ 1,… ,ܰሻ and the desired number of clusters ܭ, the algorithm 
works as follows: 

1. Randomly select ܭ cluster centers 

2. Determine ߜଶሺܪ௡, ݊	∀	௞ሻߵ ൌ 1,… ,ܰ  and 	∀	݇ ൌ 1,… ,    ܭ

3. Assign each data point ܪ௡ to the closest cluster center  

4. Calculate the new set of cluster centers as: 
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௞ߵ ൌ
1

௞ܰ
෍ܪ௡

ேೖ

௡ୀଵ

 (11) 

where the sum is performed over all ௞ܰ data points ܪ௡ associated to the cluster ܭ (∑ ௞ܰ
௄
௞ୀଵ ൌ ܰ). 

5. Repeat Steps 2 through 4 until the data points to cluster association does not change 

 

4.4.3 Mean-Shift 

Mode-seeking approaches [27] look at the density distribution of data points lying in a metric space. 
Clusters are viewed as regions of the space with high point density separated by regions of low point density. 
Clusters can be identified by searching for regions of high density, called modes. For the comparison a Mode-
seeking algorithm referred to as the Mean-Shift. 

The Mean-Shift algorithm [26] is a non-parametric iterative procedure that can be used to assign each point 
to one cluster center through a set of local averaging operations. The local averaging operations provide 
empirical cluster centers within the locality and define the vector which denotes the direction of increase for the 
underlying unknown density function. 

The underlying idea is to treat each point ݔ௜  ሺ݅ ൌ 1, … ,ܰሻ  of the dataset as an empirical probability 
distribution function using kernel ܭሺݔሻ: Թ஽ → Թ. This multivariate kernel density resides in a multidimensional 
space where regions with high data density (i.e., modes) correspond to local maxima of the density estimate 
ூ݂ሺݔሻ defined by: 

ூ݂ሺݔሻ ൌ
1

ܰ ቀܭௗ෍ܹܤ
ݔ െ ௜ݔ
ܹܤ

ቁ

ே

௜ୀଵ

 (12)

where ݔ ∈ Թ஽ and ܹܤ is often referred as the bandwidth associated with the kernel. The kernel ܭ in Eq. 12 
serves as a weighting function associated with each data point and is expressed as: 

ሻݔሺܭ ൌ ܿ௞ ݇ሺ‖ݔ‖ଶሻ (13)

where ݇ሺݔሻ: ሾ0,∞ሿ → Թ is referred as the kernel profile and ܿ௞ is a normalization constant. The profile satisfies 
the following properties: 

 ݇ሺݔሻ is non negative 

 ݇ሺݔሻ is non increasing 

 ݇ሺݔሻ is piecewise continuous and ׬ ݇ሺݔሻ݀ݔ ൏ ∞
ஶ
଴  

In order to estimate the data points with highest probability from an initial estimate (i.e., the modes of 
ூ݂ሺݔሻ), consider the gradient of the density function ׏ ூ݂ሺݔሻ ൌ 0 where: 

׏ ூ݂ሺݔሻ ൌ
2ܿ௞	

஽ାଶܹܤܰ ൭෍݃൬ቛ
ݔ െ ௜ݔ
ܹܤ

ቛ
ଶ
൰

ே

௜ୀଵ

൱൮
∑ ݔ ݃ ൬ቛ

ݔ െ ௜ݔ
ܹܤ ቛ

ଶ
൰ே

௜ୀଵ

∑ ݃ ൬ቛ
ݔ െ ௜ݔ
ܹܤ ቛ

ଶ
൰ே

௜ୀଵ

െ ൲ (14)ݔ

which points in the direction of the increase in kernel density estimate. The kernel ܭሺݔሻ is also referred to as the 
shadow of ܩሺݔሻ ൌ ܿ௚	݃ሺ‖ݔ‖ଶሻ where ܿ௚, similar to ܿ௞, is a normalization constant and ݃ሺݔሻ is the derivative of 
݇ሺݔሻ over x, i.e., ݃ሺݔሻ ൌ ݇′ሺݔሻ. 
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In Equation 14 the first term denoted is a scalar proportional to the density estimate computed with the 
kernel ܩሺݔሻ and does not provide information regarding where the mode resides. Unlike the first term, the 
second term in Equation 14, is difference between the weighted mean 

݉ሺݔሻ ൌ
∑ ݔ ݃ ൬ቛ

ݔ െ ௜ݔ
ܹܤ ቛ

ଶ
൰ே

௜ୀଵ

∑ ݃ ൬ቛ
ݔ െ ௜ݔ
ܹܤ ቛ

ଶ
൰ே

௜ୀଵ

 (15)

and the initial estimate ݔ. This term points in the direction of local increase in density using kernel ܩሺݔሻ, hence 
provides a means to find the mode of the density. Note that all points used to compute a particular mode are 
considered to reside in the same cluster. 

 

Figure 11. Density estimation (red line) for points distributed in a 1D space (green dots) given kernel 
functions associated to each point (blue lines). 

 

Figure 12. Cluster center (Sc) estimation using gradient based approach. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

10



 

20 

Since each data point ݔ௜ is considered as an empirical probability distribution function (see Figure 11), this 
consideration allows to include in the scenario clustering analysis also the possible uncertainty associated with 
each scenario. 

Starting from an arbitrary data point (e.g., point ஺ܵin Figure 12), the algorithm defines the locality using a 
circular region centered around this point (or a hyper-spherical region depending on the number of dimensions). 
The radius of this region is equal to the bandwidth ܹܤ of the chosen kernel. The objective is to consider points 
residing in this region for estimating their weighted average which corresponds to the center of mass of these 
points (point ݉ሺ ஺ܵሻ) in Figure 12) where: 

݉ሺ ஺ܵሻ ൌ

∑ ݔ ݃ ቆቛ ஺ܵ െ ௜ݔ
ܹܤ ቛ

ଶ

ቇே
௜ୀଵ

∑ ݃ ቆቛ ஺ܵ െ ௜ݔ
ܹܤ ቛ

ଶ

ቇே
௜ୀଵ

 (16)

The weighted average or the center of mass ݉ሺ ஺ܵሻis used as the new position for ஺ܵ for the next iteration, 
such that the density in the new center of mass is always higher than its previous position. Convergence is 
reached when the distance between the new center of mass and the old one is below a fixed threshold9 (point SC 
in Figure 12). Upon reaching this stopping condition: 

 point ܵ஼ is considered the center of a cluster, and, 

 the original point ஺ܵ is uniquely associated to the cluster centered by point ܵ஼. 

During this process, several derivative kernels ܩሺݔሻ can be used as indicated in [28], including: 

 Uniform kernel: ܩሺݔሻ ൌ ൜
1 ‖ݔ‖ ൑ ܹܤ
0 ‖ݔ‖ ൐ ܹܤ

 

 Gaussian kernel: ܩሺݔሻ ൌ ݁ି
‖ೣ‖మ

ಳೈమ  

 Epanechnikov kernel: ܩሺݔሻ ൌ ቊ
ଷ

ସ
ሺ1 െ ଶሻݔ ‖ݔ‖ ൑ ܹܤ

0 ‖ݔ‖ ൐ ܹܤ
 

As indicated earlier, the purpose of ܩሺݔሻ  is to assign different weights to different points during the 
estimation of the center of mass. Kernels such as the Gauss and the Cone kernel assign higher weights to the 
points located at the center of kernel which implies that the calculated center of mass is biased toward the center 
of the kernel. Thus, the distance between two consecutive calculated positions of the center of mass is smaller if 
Gauss or Cone kernels are used compared to the uniform kernel. Consequently, convergence can be reached 
faster using kernels such as the Gauss one. 

When this procedure is repeated for all the points in the data set it is possible to obtain: 

 The center of all the clusters and the list of all the points that belong to that specific cluster, and, 

 The cluster to which each point belongs (as mentioned earlier, each point belongs to one cluster only). 

 

 

                                                      

9 Usually the threshold is a fixed value chosen to be a small fraction of ݄ (typically ݄/100 or ݄/1000) 
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4.4.4 DBSCAN 

DBSCAN is a density-based clustering algorithm not dissimilar from the Mean-Shift one described in 
Section 4.4.3. Given a set of data points, the algorithm clusters together data points located in high density 
regions while marking as outliers points that lie alone in low density regions. 

The DBSCAN algorithm require two parameters: 

 BW: bandwidth  

 MinPts: minimum number of points required to form a high density region 

The algorithm starts with an arbitrary starting data point that has not been previously visited. Then the 
algorithm retrieves all data points within the bandwidth radius: if there are sufficiently many points (i.e., 
MinPts) a cluster is started otherwise the point is labeled as noise.  

If a data point is found to be a dense part of a cluster, its BW-neighborhood is also part of that cluster. 
Hence, all points that are found within the BW-neighborhood are added, as is their own BW-neighborhood when 
they are also dense. This process continues until the density-connected cluster is completely found. Then, a new 
unvisited point is retrieved and processed, leading to the discovery of a further cluster or noise. 
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5. TIME DEPENDENT DATA ANALYSIS 
 

So far we have briefly described the most relevant data mining techniques within the RISMC framework. At 
this point we can make step further: making the algorithms shown in Section 4 useful to deal with time 
dependent data. Using same analogy presented for static data we aim to group scenario with similar temporal 
patterns. 

An example is shown in Figure 13 applied to a data set containing the time evolution of 1000 time series has 
been generated by randomly changing (through a Monte-Carlo sampling) three variables (i.e., ݔ, ,ݕ  We .(ݖ
introduced a “discontinuity” in the temporal evolution of the time series depending if ݔ ൐ 4 or ݔ ൏ 4. 

 

Figure 13. Plot of a 1000 time series data set in a 2-dimensional space (plus time). 

 

Figure 14. Plot of the clusters obtained from the data shown in Figure 13. 

Cluster_0 Cluster_1 
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Figure 15. Histograms of the sampled values for Cluster_0 and Cluster_1 (shown in Figure 14) that 
created them and were captured by the clustering algorithm. 

By using any clustering algorithm we want to partition the 1000 generated scenario into 2 clusters (see 
Figure 14). Note how the scenarios in each cluster have a very similar temporal behavior. Then, by looking at 
the histograms of the sampled variables ݔ, ,ݕ  for the scenarios contained in each cluster we were able to verify ݖ
that ݔ was creating the splitting of the data set. Figure 15 shows the histograms of ݔ for both clusters: for 
Cluster_0 ݔ	 ൏ 4  while ݔ ൐ 4  for Cluster_1. Note that we would not have been able to capture this 
“discontinuity” by considering only the end or max values of the time series. 

 

5.1 Data Set format 
Again, we will indicate with Λ the data set generate by any of the methods mentioned above which contain 

ܰ time series10 ܶܵ୬	ሺ݊ ൌ 1,… , ܰሻ: 

Λ ൌ ሼܶ ଵܵ, … , ܶܵ୬,… , ܶܵ୒ሽ (17)

To preserve generality, given the complexity of the data generated by simulation based PRA methods such as 
RISMC, we now assume that each scenario ߅௡ contains three components:  

ܶܵ୬ ൌ ሼࣂ௡, ઢ௡, ડ௡ሽ (18)

These components are the following: 

 Continuous data ࣂ௡: this data contains the temporal evolution of each scenario, i.e., the time evolution 
of the ܯ state variables ݔ௠௡  (݉ ൌ 1,…  e.g., pressure and temperature at a specific computational) (ܯ,
node). All of these state variables change in time ݐ (where ݐ ranges11 from 0 to ݐ௡):  

௡ࣂ ൌ ሼݔଵ
௡,… , ெݔ

௡ ሽ (19)

where each ݔ௠௡  is a an array of values having length ௡ܶ. Hence, ࣂ௡ can be viewed as a ܯ ൈ ௡ܶ matrix12. 

 Discrete data ઢ௡: which contains timing of events. Note that a generic event ܧ௜
௡ can occur: 

                                                      

10 In this paper we will indicate time series as simulation runs or histories 
11 This allows us to maintain generality by having time series with different time lengths 
12 As an example, ݔଶ

ଷ is a vector having length ଷܶ which represents the temporal profile of variable 2 for scenario 3. 
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o At a time instant ߬௜: in this case the event can be defined as ሺܧ௜
௡, ߬௜ሻ, or, 

o Over a time interval ሾ߬௜
ఈ, ߬௜

ఠሿ: in this case the event can be defined as ሺܧ௜
௡, ሾ߬௜

ఈ, ߬௜
ఠሿሻ 

 Set ડ௡ of ܸ boundary conditions ܥܤ௩௡	ሺݒ ൌ 1,… , ܸሻ and ܷ initial  conditions ܥܫ௨௡	ሺݑ ൌ 1,… , ܷሻ. 

This report focuses on the continuous part ࣂ௡ and ડ௡ of the data set Ξ. 

 

5.2 Approaches 
Two possible paths13 that can be followed to analyze time dependent data: 

1. Path 1 (see Figure 16): Employ classical clustering algorithms by transforming each time series as a single 
multi-dimensional vector. Recall that algorithms such as K-Means and Mean-Shift can naturally deal with 
multi-dimensional vectors, i.e., each data point can be represented as a multi-dimensional vector. 
Following this, in this path each time series is converted into a multi-dimensional vector (as part of a pre-
processing step). This can be done, for example, through a polynomial or Fourier transformation (see 
Section 6.2). 

2. Path 2 (see Figure 17): Maintain the original format of the time series end employ clustering algorithms 
that can receive in input a distance matrix (thus appropriate distance metrics needs to be defined). Few 
algorithms, such the hierarchical and the DBSCAN clustering algorithms can received in input the solely 
distance matrix Δ ൌ ሾߜ௜௝ሿ where each element ߜ௜௝ represent the distance between time series ݅ and ݆.  

The advantage of the first path is that it employs a large variety of clustering algorithms that can handle very 
complex data sets (i.e., data points clustered in complex shapes other than ellipsoidal). On the other side, the 
conversion of the time series prior the clustering may cause erroneous results if clustering parameters are not 
chosen properly (e.g., if the time series are very similar to each other and a coarse representation is chosen). 

The second path, however, since it employs algorithms which can accent as input the distance matrix Δ, they 
do not require any data transformation. When dealing with time series data the most important parameter to be 
considered here is the distance metric chosen to determine each element ߜ௜௝ of Δ. 

Both these methods are available in RAVEN and are described in more detail in Section 6. 

 

Figure 16. Analysis of time-dependent data using static representation conversion. 

                                                      

13 A third path that is currently under investigation is to reconstruct the major clustering algorithms available in the literature (e.g., K-Means, Mean-Shift) 
so that they can natively perform data analysis on the time series data set (i.e., without prior transformation, see path 1). The major challenge in this 
approach is the need to define an operator that, given a subset of time series, it can generate a distance-based average time series. This average value 
can be challenging to obtain depending on the distance metrics employed. 
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Figure 17. Analysis of time-dependent data using distance matrix based algorithms (e.g., Hierarchical). 
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6. RAVEN TIME DEPENDENT DATA ANALYSIS 
 

6.1 Data Pre-processing 
Depending on the application, the data set may need to be pre-processed. A common pre-processing method 

is the Z-normalization procedure: each variable ݔ௠௡  of ࣂ௡ is transformed into ݔො௠௡ : 

ො௠௡ݔ ൌ
௠௡ݔ െ ݉݁ܽ݊ሺݔ௠௡ ሻ
௠ݔሺݒ݁ܦ݀ݐݏ

௡ ሻ
 (20) 

where ݉݁ܽ݊ሺݔ௠௡ ሻ and ݒ݁ܦ݀ݐݏሺݔ௠௡ ሻ represent the mean and the standard deviation of ݔ௠௡ . This transformation 
provides an equal importance to every ݔ௠௡  and it compensates for amplitude offset and scaling effects when 
distance between time series is computed14. 

In case the time-series are affected by noise, it might be worthwhile to smooth the time series using classical 
filtering and regression techniques so that the noise is filtered out and the series information is maintained. A 
commonly used de-noising or filtering technique is the kernel-regression technique. 

This simple technique starts from the raw data ࣂ௡ which is time dependent (i.e., ࣂ௡ሺݐሻ) and generate the 
regressed term ࣂ෩௡ሺݐᇱሻ as follows: 

ᇱሻݐ෩௡ሺࣂ ൌ
∑ ݐሺܭ െ ሻ′ݐ ሻ೙்ݐ௡ሺࣂ
௧ୀ଴

ݐሺܭ െ ሻ′ݐ
 (21)

where	ܭሺݐ െ  .௡ࣂ ሻ is the kernel used to smooth′ݐ

Another operation that can be performed in the pre-processing is the re-sampling of ࣂ௡ . Recall that ࣂ௡ 
contains the values of the time dependent data variables ሼݔଵ

௡, … , ெݔ
௡ ሽ sampled at specific time instants. The re-

sampling operation aim to reduce those time instants by choosing a new set of time instants (typically a smaller 
set) that preserves the information content of the ࣂ௡. 

The motivations behind the choice of this step are the following: 

1. Less memory intensive 

2. Faster computations 

In RAVEN several re-sampling strategies have been implemented (see Figure 18): 

 Uniform: ܰ sample points (ܰ is provided as input) are uniformly located along the time axis 

 First derivative:	ܰ sample points (ܰ is provided as input) concentrated in regions with higher values of 
the first derivative 

 Second derivative:	ܰ sample points (ܰ is provided as input) concentrated in regions with higher values of 
the second derivative 

 Filtered first derivative: sample points are located when the first derivative is greater than a value 
provided as input; thus the obtained number of samples cannot be determined a priori 

 Filtered second derivative: sample points are located when the second derivative is greater than a value 
provided as input; as indicated above, the obtained number of samples cannot be determined a priori 

 

                                                      

14 This is in particular relevant when ݔ௠ have different scales (e.g., temperatures in the [500,2200] F interval while pressures are in the [0,16 106] Pa 
interval)  
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Figure 18. Plot of three of the time-series re-sampling strategies avaibale in RAVEN: uniform (top), first-
derivative (middle) and second-derivative (bottom). 
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6.2 Data Representation 
One of the most fundamental modeling choices regarding time dependent data is how each time series is 

actually represented in the data mining process. Reference [29] provides a broad analysis of the many 
representation methods. Some of these methods have been implemented in RAVEN; the choice of these 
implemented methods was based on their effectiveness on nuclear engineering applications. In the following 
sub-sections we will present these methods in mode detail along with some preliminary results obtained by 
RAVEN.  

We also include a method (see Section 6.2.5) that have been investigated but not directly implemented in 
RAVEN. This method employs a symbolic conversion of the raw data (i.e., not numbers but characters) which 
has the advantage that many text mining algorithms can be exploited (e.g., Markov Models). It has been chosen 
to post-pone the implementation of this methods into future developments since: 

 RAVEN internal data objects format does not allow to include symbolic data 

 Such extension would require major coding effort  

 Symbolic data mining is still an R&D activity even the promising capabilities 

 

6.2.1 Real-valued 

The original format of the time series is maintained. This approach does not require any prior knowledge 
from the user so it can be considered a fail-safe approach. On the other side this method (depending on the data 
set) can be memory and computationally intensive. 

 

6.2.2 Polynomial 

The time series is approximated by a Taylor polynomial function (see Figure 19) up to a fixed degree and the 
vector of coefficients are retained as representatives for the time series. Recall that ࣂ௡ ൌ ሼݔଵ

௡,… , ெݔ
௡ ሽ contains the 

temporal evolution of a set of ܯ variables (i.e., ݔଵ
௡ ൌ ଵݔ

௡ሺݐሻ), for the Taylor case for example, the approximation is 
performed as follows for each ݔଵ௡ሺݐሻ: 

ଵݔ
௡ሺݐሻ ≅෍ܿచ చݐ

஼

చୀ଴

 (22)

The representation process using Taylor expansion replace ݔଵ
௡ሺݐሻ with a vector having dimensionality ܥ ൅ 1 

containing all coefficients ܿచ	ሺ߫ ൌ 0, … ,   .ሻܥ
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Figure 19. Polynomial approximation of a time series for several polynomial degrees. 
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6.2.3 Chebyshev 

The Chebyshev representation follows exact principle presented above for the Taylor case (see Figure 20): 

ଵݔ
௡ሺݐሻ ≅ ቎෍ܿచ చܶሺݐሻ

஼ିଵ

చୀଵ

቏ െ
1
2
ܿ଴ (23)

where చܶሺݐሻ is the Chebyshev polynomial of order ߫: 

ܶ0ሺݐሻ ൌ 1
ܶ1ሺݐሻ ൌ ݐ
ܶ2ሺݐሻ ൌ 2ݐ	2 െ 1
ܶ3ሺݐሻ ൌ 3ݐ	4 െ ݐ	3
ܶ4ሺݐሻ ൌ 4ݐ	8 െ 2ݐ	8 ൅ 1
⋯
ܶ߫൅1ሺݐሻ ൌ 2 ݐ ܶ߫ሺݐሻ െ ܶ߫െ1ሺݐሻ

 (24)

The representation process using Chebyshev expansion replace ݔଵ
௡ሺݐሻ with a vector having dimensionality ܥ ൅ 1 

containing all coefficients ܿచ	ሺ߫ ൌ 0, … ,   .ሻܥ

 

6.2.4 Legendre 

The Legendre polynomials are polynomials (see Figure 21) of the following form: 

ܲ0ሺݐሻ ൌ 1
ܲ1ሺݐሻ ൌ ݐ
ܲ2ሺݐሻ ൌ ሺ2	2ݐ െ 1ሻ/2
ܲ3ሺݐሻ ൌ ሺ5	3ݐ െ ሻ/2ݐ	3
ܲ4ሺݐሻ ൌ ሺ35	4ݐ െ 2ݐ	30 ൅ 3ሻ/8
⋯

ܶ߫൅1ሺݐሻ ൌ
ሺ2 ߫ െ 1ሻ ݐ ܶ߫െ1ሺݐሻ െ ሺ߫ െ 1ሻܶ߫െ2ሺݐሻ

߫

 (25)

The representation process using Chebyshev expansion replace ݔଵ
௡ሺݐሻ with a vector having dimensionality ܥ ൅ 1 

containing all coefficients ܿచ	ሺ߫ ൌ 0, … ,   .ሻܥ

 

6.2.5 Laguerre 

The Laguerre polynomials ܮ௡ሺݐሻ are polynomials (see Figure 23) of the following form:: 

ሻݐ0ሺܮ ൌ 1
ሻݐ1ሺܮ ൌ 1 െ ݐ
…
ሺ݊ ൅ 1ሻ݊ܮሺݐሻ െ ሺ2݊ ൅ 1 െ ሻݐሺ݊ܮሻݐ ൅ ݊ ሻݐെ1ሺ݊ܮ ൌ 0

 (26)
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Figure 20. Chebyshev approximation of a time series for several polynomial degrees. 
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Figure 21. Legendre approximation of a time series for several polynomial degrees. 
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Figure 22. Laguerre approximation of a time series for several polynomial degrees. 
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Figure 23. Hermite approximation of a time series for several polynomial degrees. 
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6.2.6 Hermite 

The Hermite polynomials ܪ௡ሺݐሻ are polynomials of the following form (see Figure 23): 

ሻݐ0ሺܪ ൌ 1
ሻݐ1ሺܪ ൌ ݐ
…
ሻݐ൅1ሺ݊ܪ െ 2 ݐ ሻݐሺ݊ܪ ൅ 2 ݊ ሻݐെ1ሺ݊ܪ ൌ 0

 (27)

 

6.2.7 Discrete Fourier Transform 

Similar to the polynomial representation, the time series is approximated by a Fourier series and the series 
coefficients are retained as representatives for the time series. The Fourier series is as follows (see Figure 24): 

ଵݔ
௡ሺݐሻ ≅

ܽ଴
2
෍൫ܽచ cosሺ߫ ሻݐ ൅ ܾచ cosሺ߫ ሻ൯ݐ

஼

చୀଵ

 (28)

 

6.2.8 Singular Value Decomposition (SVD) 

This method performs an eigenvalues and eigenvectors decomposition of ࣂ௡ and selects a reduced set of 
eigenvectors. Each time series ߅௡ is represented by the coefficients associated to each eigenvector. Note that 
this decomposition must be performed on all time-series as a whole since SVD decomposition is performed on 
the covariance matrix which is calculated by considering all set of time series and not one time series separately. 
This is performed for each ݔ௠ (݉ ൌ 1,…  :independently by (ܯ,

1. Normalizing the data: zero mean and unit variance (see Figure 25) 

2. Resampling the data set so that all time series have been sampled on the exact same time instants 

3. Determining the covariance matrix  

4. Performing SVD of the covariance matrix, i.e., eigenvalues and eigenvectors decomposition (see Figure 
26). Note that each eigenvector is a time series sampled at the same time instants of the original time 
series. The eigenvectors can be ranked based on the associated eigenvalues: the space reduction can be 
performed by considering the eigenvector with higher eigenvalues (see Figure 27) 

5. Projecting the original time series into the eigenvectors space (either reduced or not) and using the 
projection coefficients as time series representation format. 
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Figure 24. Fourier approximation of a time series for several polynomial degrees. 
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Figure 25. Plot of the original (left) and normalized (right) data sets used to to test the SVD 
representation. 

 

Figure 26. Plot of the eigenvectors of the data set shwon in Figure 25. 



 

38 

 

Figure 27. Plot of the individual and cumulative variance for each of the 24 eigenvectors. 

 

6.2.9 Symbolic 

In short, this method performs a symbolic conversion of ࣂ௡: i.e., the original numerical data is converted as 
a an ordered list of symbols (e.g., letters). This capability has not been implement in RAVEN due to the fact that 
RAVEN can handles only numerical data and the handling of symbolic data would require large development of 
the code itself. Given the fact that this representation method is still in a very early stage of evaluation, it has 
been decided to leave the development on hold. From an R&D point of view an initial testing has been 
performed and it was shown in [30]; this section summarizes such testing. 

The algorithm we evaluated is based on SAX [31] which is an algorithm that allows the user to represent 
continuous time-varying data ܵ as a series of n symbols ܵ̿ ൌ ,ଵݏ̿ ,ଵݏ̿ … ,  .௜ is a symbolݏ̿ ௡ whereݏ̿

While temporal discretization is performed by partitioning the time axis into n intervals having the same 
length, the discretization of ߠሺݐሻ is typically performed by dividing the range of ߠ into  equi-probable regions. 
Each region has a character ̿ݏ associated to it andthe alphabet size has cardinality15 . The resulting conversion 
generates a time series of length n and an alphabet size equal to . The SAX algorithm consists of the steps (also 
see Figure 28) described in Algorithm 1. 

 

 

 

 

                                                      

15 Cardinality of the alphabet refers to the number of characters used. 
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Algorithm 1: SAX Algorithm 

1: Input: n and  
2: Normalize the data (mean equal to 0 and standard deviation 

equal to 1) 
3: Partitionthe temporal interval into n equal sized intervals 
4: Divide the distribution of ߠሺݐሻ into a equi-probable regions and 

assign a symbol to each region (alphabet has cardinality equals 
to ) 

5: Consider the average value ̅ݏ of ߠሺݐሻ in each interval 
6: For each ̅ݏ  assign its own ̿ݏ  according to the discretization 

performed in Step 4 
7: Generate a phrase ܵ̿ as a timely ordered sequence of symbols  

 

The end result is a phrase ܵ̿: a timely ordered sequence of symbols. An example of discretization for the 
temporal profile of a scenario taken from [28] is shown in Figure 28 and Figure 29. 

Typically, data generated by simulations contain the temporal profile of multiple variables; moreover, as 
also shown in Figure 28, a fixed number (i.e., n) of time intervals having equal length is not optimal to capture 
rapid changes of ܵ. 

The issue of dealing with multiple variables can be solved by: 

 Performing Steps 2 and 4 in Algorithm 1 independently for each variable, and, 

 Maintaining the order of symbols for every variable in each time interval 

 

 

Figure 28. Example of symbolic conversion with a = 6 and n = 5. 

a 

b 

c 

d 

e 

f 

t

S

S

Alphabet = { a, b, c, d, e, f } 

S  ebace

s1  e s2  b s3  a s4  c s5  e
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Figure 29. Application of the SAX algorithm [31] for a nuclear transient: raw data (top left), data 
normalized (top right), temporal discretization (bottom left) and symbol sequence generation (bottom 

right). 

Regarding the issue of identifying rapid changes of state variables, a solution is to recursively analyze the 
rate of change of the covariance matrix computed in that interval (as shown in [31]). The rationale is to choose 
time intervals such that the rate of change of the covariance matrix eigenvalues is below a fixed threshold (see 
Algorithm 2). As input, the minimum and a maximum length of the time interval are required in order to 
preserve accuracy and avoid extremely long phrases.  

 

Algorithm 2: Adaptive Time Discretization 

1: Input: maximum value for the rate of change of the eigenvalues of the 
covariance matrix, ߣሶெ௔௫ ; minimum and maximum length of the time 
discretization, i.e., tMin and tMax 

2: Divide the time scale in intervals having length tMax 
3: Evaluate the covariance matrix of the data points contained in that interval 

and determine its eigenvaluesߣ௜ 
4: Determine the highest eigenvalue relative variation ̅ߣሶ 
5: If ̅ߣሶ>ߣሶெ௔௫ then split the interval into 2 intervals of equal length 
6: Repeat Steps 3 and 4 for all intervals 
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From our experience, the choice of the optimal values of n and  is case dependent. In our application we 
aim to choose values of n and such that no two scenarios are represented by the same phrase. Figure 30 shows 
an example of time adaptive discretization of a scenario characterized by 2 variables. 

 

Figure 30. Adaptive time discretization of multi-dimensional scenarios; a 2-variable case (containment 
and reactor pressure vs. time) is shown: original data (left) and corresponding discretization (right). 

 

6.3 Measuring Similarities 
The second important modeling choice when dealing with time series regards the type of similarity metric 

also known as distance. Similar to the theory behind distances in Euclidean space, a distance metric ݀ሺܵ, ܳሻ 
measures the “similarity” between two time series ܵ and ܳ. Recall that ݀ሺܵ, ܶሻ has to obey the following rules: 

൞		

݀ሺܵ, ܵሻ ൌ 0
݀ሺܵ, ܳሻ ൌ ݀ሺܳ, ܵሻ
݀ሺܵ, ܳሻ ൌ 0 iff	 ܵ ൌ ܳ
݀ሺܵ, ܳሻ ൑ ݀ሺܵ, ሻܭ ൅ ݀ሺܭ, ܳሻ

 (29)

When dealing with time series, the following two metrics are the most commonly use: Euclidean and 
Dynamic Time Warping (DTW) [20] distance. These distances are described in the next two subsections for the 
univariate case, i.e., two time series ܳ and ܵ where their continuous part has ܯ ൌ 1. The more generic case, i.e., 
multivariate case, can be easily expanded from what is shown below. 

 

6.3.1 Euclidean distance 

Given two univariate time series ܵ  and ܳ  having identical length (i.e., ௌܶ ൌ ொܶ ) the Euclidean distance 
݀ଶሺܵ, ܳሻ is defined as: 

݀ଶሺܵ, ܳሻ ൌ ඩ෍ቀݔଵ
ௌሺݐሻ െ ଵݔ

்ሺݐሻቁ
ଶ

்ೄ

௧ୀ଴

 (30)
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Figure 31. Euclidean distance metric for two time series ࡿ and ࡽ. Each black segment represents: 
૚࢞
ሻ࢚ሺࡿ െ ૚࢞

 .ሻ࢚ሺࢀ

6.3.2 DTW Distance 

This distance can be viewed as a natural extension of the Euclidean distance applied to time series [20]. 
Given two univariate time series ܵ and ܳ having length ௌܶ	and ொܶ respectively16. The distance value ݀஽்ௐሺܵ, ܳሻ 
is calculated by following these two steps: 

1. Create a matrix ܦ ൌ ሾ݀௜,௝ሿ having dimensionality ௌܶ ൈ ொܶ where each element of ܦ (see Fig. 3 for the time 

series shown in Fig. 4) is calculated as ݀௜,௝ ൌ ሺݔଵ
ௌሾ݅ሿ െ ଵݔ

ொሾ݆ሿሻଶ for ݅ ൌ 1,… , ௌܶ  and ݆ ൌ 1,… , ொܶ.  

2. Search a continuous path ݓ௞|ଵ
௄ in the matrix ܦ that, starting from ሺ݅, ݆ሻ ൌ ሺ0,0ሻ, it ends at ሺ݅, ݆ሻ ൌ ሺ ௌܶ, ொܶሻ 

and it minimizes the sum of all the ܭ elements ݓ௞ ൌ ൫݀௜,௝൯௞ of this path (see blue line in Fig. 3): 

݀஽்ௐሺܵ, ܳሻ ൌ min൭෍ݓ௞

௄

௞ୀଵ

൱ (31)

Each element of the path corresponds to a specific black segment in Fig. 4. This metric can capture 
similarities between time series that are shifted in time. 

                                                      

16 Note that here he we have relaxed the requirement: ௌܶ ൌ ொܶ 

Q 

S 
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Figure 32. Colored plot of the distance matrix ࡰ for the time series ࡿ and ࡽ plotted in Figure 31. White 
line represents the warp path ࢑࢝	ሺ࢑ ൌ ૚,…ࡷሻ. 

 

Figure 33. 3D plot of the of the distance matrix ࡰ for the time series ࡿ and ࡽ plotted in Figure 31. White 
line represents the warp path ࢑࢝	ሺ࢑ ൌ ૚,…ࡷሻ. 

Path 

Path 
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Figure 34.  DTW distance metric for two time series ࡿ and ࡽ. Each black segment represents an elements 
࢑࢝ ൌ ൫࢐,࢏ࢊ൯࢑ of the warp path shown in Figure 33. 

 

Figure 35. Derivative DTW distance metric for two time series ࡿ and ࡽ. 

Q 

S 

Q 

S 



 

45 

6.4 Path 1: From Time-Dependent To Static Data 
In Section 5.2 we have indicated two possible paths are available in RAVEN to analyze time-dependent 

data. As a reminder, the first path consists of transforming the time time-dependent data into static data. This is 
possible by performing the following steps in RAVEN: 

1. Load data either from file or from a database (as a third option, the data can be generated in the same 
RAVEN input file through a Monte-Carlo sampling process for example) 

2. Re-sample data: perform a temporal re-sampling of the data (see Section 6.1). This step might include also 
time-series synchronization: all time-series are sampled at the same time instants. 

3. Cluster data: perform the actual clustering of the data (e.g., through Mean-Shift algorithm) on the pre-
processed data. This step includes the conversion from time-dependent to static data where the conversion 
step is embedded in the definition of the Mean-Shift algorithm through the PreProcessor keyword which 
reference the conversion post-processor HSPS. The HSPS post-processor perform the actual conversion 
prior running Mean-Shift using a real-value conversion (see Sections 6.2.1 and 4.4.3) 

    <PostProcessor name="dataPreProc" subType="InterfacedPostProcessor"> 
      <method>HS2PS</method> 
      <timeID>time</timeID> 
    </PostProcessor> 
 
    <PostProcessor name="MeanShift" subType="DataMining"> 
      <PreProcessor  class="Models" type="PostProcessor">dataPreProc</PreProcessor> 
      <KDD lib="SciKitLearn"> 
        <SKLtype>cluster|MeanShift</SKLtype> 
        <Features>output</Features> 
        <bandwidth>12</bandwidth> 
      </KDD> 
    </PostProcessor> 

 

 

Figure 36. Plot of the time-dependent data set. 

An example is shown in Figure 36 for a set of 1000 time series in a 4-dimensional space. Using the Mean-
Shift algorithm we were able to detect 2 clusters by varying the bandwidth. The plot of the scenarios belonging 
to each cluster is shown in Figure 37 while Figure 38 plot the obtained cluster centers for each of the two 
clusters. 
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Figure 37. Plot of the time series belonging to each of the two clusters (cluster_0 and cluster_1) using 
Mean-Shift. 

 

Figure 38. Plot of the cluster centers for each of the two clusters. 

 

6.5 Path 2: Clustering Through Similarity Matrix 
In Section 5.2 we have indicated also the second path available in RAVEN to analyze time-dependent data.  

This path leverages the clustering algorithms that can receive in input the similarity matrix. In RAVEN this is 
possible by performing the following steps: 

1. Load data either from file or from a database (as a third option the data can be generated in the same 
RAVEN input file through a Monte-Carlo sampling process for example) 

2. Re-sample data: perform a temporal re-sampling of the data (see Section 6.1). This step might include also 
time-series synchronization: all time-series are sampled at the same time instants. 
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3. Cluster data: perform the actual clustering of the data (e.g., through Hierarchical algorithm) on the pre-
processed data. In this step two RAVEN entities must be defined: the metric (i.e., Euclidean or DTW) and 
the hierarchical post-processor as shown below. Note that the metric to be employed in the hierarchical 
post-processor is linked in the post-processor itself. If a time-dependent data metric is not linked then the 
hierarchical algorithm expect as input static data. 

   <Metrics> 
    <DTW name="example" subType=""> 
      <order>0</order> 
      <pivotParameter>time</pivotParameter> 
      <localDistance>euclidean</localDistance> 
    </DTW> 
    <Minkowski name="exampleMink" subType=""> 
      <p>2</p> 
      <timeID>time</timeID> 
    </Minkowski> 
  </Metrics> 
  
 </Models>     
    <PostProcessor name="hierarchical" subType="DataMining" verbosity="quiet"> 
      <Metric class="Metrics" type="DTW">example</Metric> 
      <KDD lib="Scipy" labelFeature='labels'> 
        <Features>output</Features> 
        <SCIPYtype>cluster|Hierarchical</SCIPYtype> 
        <method>single</method> 
        <metric>euclidean</metric> 
        <level>75</level> <!-- 42 --> 
        <criterion>distance</criterion> 
        <dendrogram>true</dendrogram> 
        <truncationMode>lastp</truncationMode> 
        <p>20</p> 
        <leafCounts>True</leafCounts> 
        <showContracted>True</showContracted> 
        <annotatedAbove>10</annotatedAbove> 
      </KDD> 
    </PostProcessor> 
  </Models> 

 

 
Figure 39. Plot of the time-dependent data set. 

An example is shown in Figure 39 for a set of 1000 time series in a 4-dimensional space. Using the 
Hierarchical algorithm we were able to detect 2 clusters as indicated in the dendrogram shown in Figure 40. The 
plot of the scenarios belonging to each cluster is shown in Figure 41. 
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Figure 40. Dendrogram obtained from the data set shown in Figure 39. 

 
Figure 41. Plot of the time series belonging to each of the two clusters (Cluster_0 and Cluster_1) using 

Hierarchical algorithm. 
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7. RESULTS 
 

7.1 Benchmark data sets 
In the past decade the interest in time dependent data has grown exponentially. This is due to the fact that 

the great portion of the collected data actually consists of time series or can be represented as time series. The 
computer science community has responded to this interest by developing a wide variety of algorithms that can 
be used to perform data mining on time series.  

In order to quantitatively measure algorithm performances and limitations several data sets have been 
produced. The objective is to define a common-ground where classification and clustering algorithms can be 
compared in terms of computational time, memory requirements, classification/clustering performances etc. 

The UCR Time series classification archive17 [32] contains a large variety of data sets which are freely 
available and usable. A drawback of this data set is that it contains only univariate data 

One issue is related the fact that the original format of each data set is only Matlab compatible. For the 
scope of this report we have translated the original format into a RAVEN compatible one by: 

1. Translating the original raw data on file (.csv format) 

2. Converting the .csv file into a RAVEN historyset file set 

Once completed the file set obtained in Step 2 can be loaded easily loaded and analyzed into RAVEN. 

 

Figure 42. Plot of the Plane and Chlorine concentration data sets [32]. 

Only a small subset of the UCR archive data sets have been used in this fiscal year and partially reported in 
this document: 

 Plane test (see Figure 42) 

 Chlorine concentration  (see Figure 42) 

 ECG (see Figure 43) 

 ECG_5days (see Figure 43) 

 Ford (see Figure 43) 

                                                      

17 - Web-site: http://www.cs.ucr.edu/%7Eeamonn/time_series_data/    
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 Gun_point (see Figure 43) 

 Italy_power_demand (see Figure 43) 

 Medical_images (see Figure 43) 

 

 

 

Figure 43. Plot of the ECG, ECG_5days, ford, gun_point, power_demand and medical_images data sets [32]. 
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Even though these data sets are not strictly nuclear related, they provide a very good test bed for the 
algorithms developed in RAVEN. 

 

7.2 Analytical Model 
Prior to testing the algorithms on nuclear applications we tested them on a set of analytical tests. In this 

report we present one of them: the Lorentz attractor. This model describes the temporal evolution of the system 
in a 4-dimensional space (ݖ ,ݕ ,ݔ and time ݐ) and it is characterized by the following set of ordinary differential 
equations: 

ە
ۖ
۔

ۖ
ۓ

		

ݔ݀
ݐ݀

ൌ ݕሺߪ െ ሻݔ

ݕ݀
ݐ݀

ൌ ߩሺݔ െ ሻݖ െ ݕ

ݖ݀
ݐ݀

ൌ ݕݔ െ ݖߚ

 (32)

A RAVEN external model has been created. This model contains the set equations which are numerically 
solved (using finite difference scheme) given: 

 Value of the parameters (static, i.e., not time-dependent) ߪ ,ߩ and ߚ 

 Initial conditions, i.e., ݔሺݐ ൌ 0ሻ ൌ ݐሺݕ ,ሺ0ሻݔ ൌ 0ሻ ൌ ݐሺݖ ሺ0ሻ andݕ ൌ 0ሻ ൌ  ሺ0ሻݖ

Figure 44 and Figure 45 show a plot of several time series by generated by RAVEN when initial conditions 
(i.e., ݔሺ0ሻ, ݕሺ0ሻ and ݖሺ0ሻ) are stochastic variables (all normally distributed with mean ߤ ൌ െ4.0 and sigma 
ߪ ൌ 1.0) 

 

Figure 44. Time series generated by RAVEN. 
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Figure 45. Time series generated by RAVEN projected in each of the three axis (࢞ሺ࢚ሻ, ࢟ሺ࢚ሻ and ࢠሺ࢚ሻ). 

In order to create a more challenging problem we have deliberately introduced discontinuities in the model 
depending on the values of ݔሺ0ሻ, ݕሺ0ሻ and ݖሺ0ሻ. Such discontinuities cause trajectories with different time 
behavior. The discontinuities were the following: 

 If ݔሺ0ሻ ൏ 4.0 then ߩ ൌ 28.0, else ߩ ൌ െ28.0 

 If ݕሺ0ሻ ൏ 4.0 then ߪ ൌ െ1.0, else ߪ ൌ 10.0 

 If ݕሺ0ሻ ൏ 4.0 then ߚ ൌ
ଷହ

ଷ
 and simulation time is equal to 0.5, else ߚ ൌ

ଵ଴

ଷ
 and simulation time is equal 

to 0.65 

 

Figure 46. Data set generated by RAVEN containing multiple discountinuites and having variable time 
length. 

Using RAVEN we have generated 1500 simulation runs using Monte-Carlo sampling (see Figure 46 and 
Figure 47) where ݔሺ0ሻ, ݕሺ0ሻ and ݖሺ0ሻ are normally distributed with mean and standard deviation equal to 4.0 
and 1.0 respectively (i.e., ݔሺ0ሻ, ,ሺ0ሻݕ ሺ0ሻݖ ൌ Νሺ4.0,1.0ሻ). Objective of the data mining algorithms described in 
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this report is to identify and reconstruct such discontinuities. Given the description above we expect to generate 
a data set that can be partitioned into 8 clusters: one for each combination of the values of ݔሺ0ሻ, ݕሺ0ሻ and ݖሺ0ሻ. 

By employing hierarchical clustering with DTW distance metrics (see Figure 48) we were able to obtain 7 
clusters (see Figure 49 and Figure 50). Figure 51, Figure 52, Figure 53, Figure 54, Figure 55, Figure 56 and 
Figure 57 show the temporal profile and the histograms of the three stochastic variables for the scenarios 
contained in each of the 7 clusters. 

 

Figure 47. Data set generated by RAVEN containing multiple discountinuites and having variable time 
length projected in each of the three axis (࢞ሺ࢚ሻ, ࢟ሺ࢚ሻ and ࢠሺ࢚ሻ). 

 

Figure 48. Dendrogram obtained using the RAVEN hierarchical algorithm for the data set shown in 
Figure 46. 
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Figure 49. Plot of the clustered data set shown in Figure 46 colored by the cluster labels; each of the 9 
clusters (from 1 through 9) correspond a color using Hierarchical algorithm (see Figure 48). 

 

Figure 50. Plot of the clustered data set shown in Figure 46 colored by the cluster labels; each of the 9 
clusters (from 1 through 9) correspond a color using Hierarchical algorithm (see Figure 48) projected in 

each of the three axis (࢞ሺ࢚ሻ, ࢟ሺ࢚ሻ and ࢠሺ࢚ሻ); compare with Figure 47. 
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Figure 51. Analytical model analysis - Cluster 1 information: time series and hostrograms for the sampled 
values (࢞ሺ૙ሻ, ࢟ሺ૙ሻ and ࢠሺ૙ሻ). 

 

 

Figure 52. Analytical model analysis - Cluster 2 information: time series and hostrograms for the sampled 
values (࢞ሺ૙ሻ, ࢟ሺ૙ሻ and ࢠሺ૙ሻ). 
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Figure 53. Analytical model analysis - Cluster 3 information: time series and hostrograms for the sampled 
values (࢞ሺ૙ሻ, ࢟ሺ૙ሻ and ࢠሺ૙ሻ). 

 

 

Figure 54. Analytical model analysis - Cluster 4 information: time series and hostrograms for the sampled 
values (࢞ሺ૙ሻ, ࢟ሺ૙ሻ and ࢠሺ૙ሻ). 
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Figure 55. Analytical model analysis - Cluster 5 information: time series and hostrograms for the sampled 
values (࢞ሺ૙ሻ, ࢟ሺ૙ሻ and ࢠሺ૙ሻ). 

 

 

Figure 56. Analytical model analysis - Cluster 6 information: time series and hostrograms for the sampled 
values (࢞ሺ૙ሻ, ࢟ሺ૙ሻ and ࢠሺ૙ሻ). 
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Figure 57. Analytical model analysis - Cluster 7 information: time series and hostrograms for the sampled 
values (࢞ሺ૙ሻ, ࢟ሺ૙ሻ and ࢠሺ૙ሻ). 

Given the description of the actual model wee were expecting 8 groups of scenarios depending the values of 
 ሺ0ሻ.  In order to investigate such results we mapped the expected with the obtained results inݖ ሺ0ሻ andݕ ,ሺ0ሻݔ
the following tables. Note that Cluster 6 incorporates these case that we initially thought would create different 
scenarios: ݔሺ0ሻ, ሺ0ሻݕ ൐ 4 independently of ݖሺ0ሻ. 

Table 2. Analytical test case: excepted vs. obtained clusters. 

ሺ૙ሻࢠ ൏ ૝  ݔሺ0ሻ ൏ ሺ0ሻݔ 4 ൐ ሺ૙ሻࢠ  4 ൐ ૝  ݔሺ0ሻ ൏ ሺ0ሻݔ 4 ൐ 4 

ሺ0ሻݕ  ൏ 4 Cluster 5 Cluster 2   ݕሺ0ሻ ൏ 4 Cluster 7 Cluster 3 

ሺ0ሻݕ  ൐ 4 Cluster 1 Cluster 6   ݕሺ0ሻ ൐ 4 Cluster 4 Cluster 6 

 

7.2.1 Analysis Summary 

In summary, using the analytical model data set we were able to gather the following information: 

 The hierarchical algorithm was able to clearly partition the original time series by considering the full 
temporal profile of the time series 

 The obtained clusters (i.e., 7 clusters) are a subset of the expected obtained clusters (i.e., 8 clusters): this is 
due to the fact that the impact of ݖሺ0ሻ is negligible when ݔሺ0ሻ ൐ 4 and ݕሺ0ሻ ൐ 4 on the temporal profile 
of the simulations (i.e., cluster 6 comprise two clusters that were originally expected to identify). 
However, as predicted the impact of ݖሺ0ሻ is relevant for the other cases 
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7.3 Pump Controller 
The second test case considers a pump controller model for a hypothetical simplified PWR model (see 

Figure 58) which consists of the following components:  

 Reactor core (RX) 

 Motor operated pump 

 Pump digital controller 

 Heat exchanger (HX)  

This system is responsible to remove the decay heat generated from the core (RX) in order to avoid damage 
of the core itself. The objective is to maintain the temperature in the reactor core between 1500 C and 1600 C. 
The top-events are thus the following: 

 Success: final temperature between 1500 C and 1600 C 

 Failure-high: final temperature greater than 3000 C 

 Failure-low: final temperature lower than 1600 C 

While we assumed that both the HS and the pump are perfectly reliable components (i.e., no failure can be 
introduced), using [33] as a references, the digital pump controller reliability model has been performed using a 
continuous time Markov Chain formulation. 

 

Figure 58. Pump controller test case: scheme of the system condiered. 

In more detail, the controller has been modeled using 4 states (Figure 59): 

 State 0 - Operating: controller operating as designed 

 State 1 - Failed closed: controller failed by sending close signal to pump (i.e., pump not running) 

 State 2 - Failed stuck: controller failed by sending oldest valid signal to pump 

pump 
HX 

RX 

Controller 
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 State 3 - Failed random: controller failed by sending close signal to pump 

For the scope of this report we have assumed a constant (in time) failure rate ߣ for all three transitions shown in 
Figure 59. The scope of this exercise is to identify the impact of both timing and type of failure on the system 
dynamics. 

 

Figure 59. Continuos time Markov model for the pump controller. 

In order to perform such analysis the model has been coded as a RAVEN external model (i.e., Python based 
code) which determine the temporal profile of core temperature give the two stochastic parameters: 

 Pump controller failure time 

 Pump controller failure mode 

The dynamic of the system has been modeled using basic mass and energy conservation laws so no effective 
engineering conclusions can be gathered by this example. An example of scenario where no pump failure occurs 
is shown in Figure 60. Note that the transient has been divided along the temporal axis in 5 regions where: 

 Pump is ON in regions 1, 3 and 5 

 Pump is OFF in regions 2 and 4 

 

Figure 60. Pump controller: example of scenario where no pump failure occurs. 

Pump 
OFF 

1 2 3 4 5 
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By using RAVEN we sampled the two stochastic parameters (see the histograms of these variables in Figure 62) 
using a Monte-Carlo algorithm and generated 1500 simulations as shown in Figure 61. 

 

Figure 61. Pump controller: plot of the 1500 histories generated by RAVEN. 

 

Figure 62. Histograms of the two stochastic variables, i.e., failure time (left) and failure mode (right) 
generated in the Monte-Carlo sampling process. 

By observing only static values such as max or final temperature (see Figure 63) it is not really possible to 
extract valuable information from the data set.  



 

62 

 

Figure 63. Histograms of max (left) and final (right) temperature of the simulations shown in Figure 61. 

For the analysis of this dataset we have chosen to use hierarchical clustering using Euclidean distance as 
distance metrics. The dendrogram obtained is shown in Figure 64. From this dendrogram it is clearly possible to 
identify 3 clusters which lead us to choose a separation level equal to 10; the plot of the scenarios colored by the 
clustering label value is shown in Figure 65. 

 

Figure 64. Dendogram obtained uisng hierarchical clustering (euclidean distance) for the dataset shown 
in Figure 61. 
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Figure 65. Plot of the 1500 histories generated by RAVEN (see Figure 61) colored based on the labels 
assigned by the hierarchical clustering (see Figure 64). 

 

Figure 66. Cluster 1 (see Figure 64): plot of the histories (left), histograms of failure mode (center) and 
failure time (right). 

 

Figure 67. Cluster 2 (see Figure 64): plot of the histories (left), histograms of failure mode (center) and 
failure time (right). 
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Figure 68. Cluster 3 (see Figure 64): plot of the histories (left), histograms of failure mode (center) and 
failure time (right). 

The analysis of the obtained clusters is summarized in Figure 66 (Cluster 1), Figure 67 (Cluster 2), Figure 
68 (Cluster 3). In order to describe the obtained results we refer also to Figure 60: 

 Cluster 1 (see Figure 66) contains a large number of scenarios that lead to both “failure-high” and 
“success” top-events and no other particular information can be deduced 

 Cluster 2 (see Figure 67) and 3 (see Figure 68) contain scenarios where pump controller in State 2 (i.e., 
stuck) while the pump was actually ON in region 1 and 3 respectively (Figure 60). They are all leading to 
the “failure-low” top-event 

Given the fact that cluster 1 contains too much variety of scenarios, we performed hierarchical clustering on 
just the scenarios belonging to Cluster 1: i.e., sub-clustering. The obtained dendrogram is shown in Figure 69. In 
this case, 5 clusters were obtained; the plot of the scenarios colored by the clustering label value is shown in 
Figure 70. 

 

Figure 69. Dendogram obtained using hierarchical clustering (euclidean distance) for the Cluster 1 
dataset shown in Figure 66. 
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Figure 70 Plot of the histories belonging to Cluster 1 (see Figure 66) colored based on the labels assigned 
by the hierarchical clustering (see Figure 69). 

The analysis of the obtained clusters is summarized in Figure 71 (Cluster 1), Figure 72 (Cluster 2), Figure 73 
(Cluster 3), Figure 74 (Cluster 4) and Figure 75 (Cluster 5): 

 Clusters 1, 2, 4 and 5 (see Figure 71, Figure 72, Figure 74 and Figure 75 respectively) contain scenarios 
where pump controller failed in any of the three modes (closed, stuck and random) but did not lead to 
the failure-high top event  

 Cluster 3 (see Figure 73) contains scenarios where pump controller failed in only two modes (closed and 
random). Note that: 

o Pump failed in the first time region 

o Controller failure random did not lead failure-high top event; however, controller failure closed 
lead to very high core temperatures (including 3000 C) 

This cluster contains scenarios leading to failure-high and success top events. Note that if controller 
failure occurs prior to about 115 min that the simulation leads to failure-high top event. 
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Figure 71. Cluster 1 (see Figure 70): plot of the histories (left), histograms of failure mode (center) and 
failure time (right). 

 

Figure 72. Cluster 2 (see Figure 70): plot of the histories (left), histograms of failure mode (center) and 
failure time (right). 

 

Figure 73. Cluster 3 (see Figure 70): plot of the histories (left), histograms of failure mode (center) and 
failure time (right). 

 

Figure 74. Cluster 4 (see Figure 70): plot of the histories (left), histograms of failure mode (center) and 
failure time (right). 
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Figure 75. Cluster 5 (see Figure 70): plot of the histories (left), histograms of failure mode (center) and 
failure time (right). 

7.3.1 Analysis Summary 

In summary, using the analytical model data set we were able to gather the following information: 

 Failure-high top event can be reached if controller failure to state 1 (i.e., failure closed) occurs prior to 115 
min  

 Failure-low top event can be reached if controller failure to state 2 (i.e., failure stuck) occurs in the time 
regions 1 and 3 

 Controller failure to state 3 (i.e., failure random) do not lead to any failure top event independently of the 
controller failure time 

 For these controller failure events the core temperatures are between 1500 C and 3000 C: 

o Controller failure to state 1 (i.e., failure closed) after to 115 min 

o Controller failure to state 2 (i.e., stuck) in time regions 2, 4 and 5 

 

7.4 PWR Station Black-Out 
In this study a Pressurized Water Reactor has been considered to analyze the evolution of a Station Black-

Out (SBO) accident scenario. The system and the scenario have been simulated with MAAP5. Therefore, a 
dedicated MAAP5 input file has been built in order to model the sequence of events desired which consist in 
some procedures [34] to be adopted and which are shown in Figure 76. First procedure to be taken into account 
is the ECA-0-0, that considers some steps up to power recovery. When power is finally recovered then 
procedure ECA-0-1 or ECA-0-2 are entered according to some plant conditions. 
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Figure 76. Scheme of the PWR Station Black-Out accident scenario. 

The Dynamic Event Tree (DET) [15] analysis consists in creating a control logic within the Thermal-
Hydraulic code simulating the scenario. This is performed by adding a series of trigger that are activated every 
time that a branching condition is met, creating consequently a set of branch. A DET analysis can be performed 
with coupling code RAVEN – MAAP5 as here shown. In particular, RAVEN drives the DET by creating, 
basing on the user defined conditions, the different branches every time that the simulation run is stopped, while 
MAAP5 run the TH simulation of the scenario modeled in the input each time that a new branch is created. 

 

7.4.1 SBO Accident Scenario  

The scenario modeled in the MAAP5 input is as follows: 

 ECA-0-0 procedure 

o Initiating Event (t = 0): Station BlackOut (SBO); 

o t = 360 s: Turbine –Driven Auxiliary FeedWater (TDAFW) is called on demand; 

o t = 780 s: Seal Loss of Coolant Accident occurs (LOCA); 

o t = 1800 s: Depressurization of Steam Generators (SGs) to cooldown RCS; 

o Power Recovery can occur anytime during the simulation; 

o t = Tpower recovery + 630 s: Choice for the next procedure to be adopted. If: 

o Reactor Cooling System (RCS) subcooling < 25°F AND Pressurizer level < 14% 

o Safety Injection (SI) is required (High Pressure Injection or Containment Spray) 

o ECA-0-2 is required; otherwise ECA-0-1 is implemented. 
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RCA Cooldown 

AC Power 
Recovery 

Choice of 
procedure 

ECA-0-1 

ECA-0-2 
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 ECA-0-1 (t = TECA-0-1) 

o t = TECA-0-1 + 750 s: Charging Pump (CHP) is switched on ; 

o t = TECA-0-1 + 900 s: Motor-Driven Auxiliary FeedWater (MDAFW) is switched on (if the TDAFW 

has previously failed); 

o t = TECA-0-1 + 900 s, if the CHP works but no AFW is available: Feed and Bleed is implemented 

(pressurizer valves are open); 

o t = = TECA-0-1 + 1260 s and CHP failed: RCS cooldown is implemented:  

o when TCORE,OUT < 565 °F and pressurizer level < 50% m: cooldown is stopped and depressurization of 

primary circuit is performed; 

o if CHP and MDAFW both succeed to work than no other actions are taken. 

o In this condition, when requirements for entering ECA-0-2 are met, then ECA-0-2 procedure is 

entered. 

 ECA-0-2 (t = TECA-0-2) 

o t = TECA-0-2 + 540 s: CHP is switched on; 

o t = TECA-0-2 + 630 s: MDAFW is switched on; 

o Containment sprays are on when the set point is triggered 

 

7.4.2 DET Assumptions 

For this scenario a DET has been generated. This DET is based on the following assumptions: 

 AC Power Recovery Time follows a lognormal distribution with parameters λ = 6.14 and k = 0.745; 

 DC battery failure is assumed to occur during the scenario according to a triangular distribution with min 
= 4h, max =6h and peak= 5h. 

Branches occur in the DET according to the following trigger conditions: 

 A branch occurs at t = 360 s from the beginning of the scenario to simulate the failure on demand of the 
turbine-driven auxiliary feedwater; 

 At t = 780 s, multiple branches are considered in order to simulate different possible LOCA size: 21 
gpm/RCP, 76 gpm/RCP, 182 gpm/RCP, 480 gpm/RCP are the four LOCAs leakage rates taken into 
account; 

 When ECA-0-1 is entered and CHP is switched on, a branch occurs to consider the failure on demand of 
the CHP; 

 Branching occur for the AC power recovery when the cumulative distribution function meets the 
thresholds: 0.05, 0.3, 0.4, 0.5, 0.7; 

 Branch occurs for accounting DC failure when the corresponding cumulative distribution function meets 
thresholds equal to 0.1 and 0.9. 

A total simulation time of 18 h = 64800 s has been considered. Simulation goes up to “core uncovery” or 
mission time. In this case, “Core uncovery” is the event corresponding to the core water level falling below the 
top of active fuel) 
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The DET simulation works as follows: a first simulation of MAAP5 is run. Every time that a branching 
condition is met, either expressed as probability or as value - (e.g. TDAFW is switched on), simulation run is 
stopped and a new set of simulations (branches) is spawned. The simulation goes on in each new branch up to a 
new branching condition is met.  

Corresponding input parameters of this DET simulation are: 

 TTAFW: turbine-driven auxiliary feedwater failure 

 CHP: charging pump failure for ECA-0-1 

 SEAL: seal LOCA occurrence 

 DCOFF: DC batteries failure time 

 ACREC: AC power recovery time 

The simulation results in 126 branches simulated for a total of 54 completed histories. 7 out of 54 histories 
ends due to the occurrence of “core uncovery” that ranges from 5257 s to 12853 s. For the other 47 histories, 
“core uncovery” is not reached within the mission time. Time evolution of some variables of the system have 
been then plotted. Examples are shown in Figure 77, Figure 78 and Figure 79. The six output variable here 
considered are: 

1. PSGGEN is the steam generator 1 pressure 

2. WWBBN is the water flow through the loop 1 break 

3. WWTOTFW is the total feed water flow 

4. ZWDC2SG is the steam generator 1 down-comer water level; 

5. MACUM is the mass of water in the accumulators tanks (total)  

6. PPS is the primary system pressure 

7. ZWCPS is the collapsed water level into the core 

In addition, Figure 80 shows the histograms of the 5 input variables listed above. Note that since the DET 
strategy is basically a discrete event simulation sampling strategy the stochastic variables are sampled for 
specific finite values. 
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Figure 77. PWR Station Black-Out: plot of the output variables generated by RAVEN-MAAP (1). 
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Figure 78. PWR Station Black-Out: plot of the output variables generated by RAVEN-MAAP (2). 

 

 

Figure 79. PWR Station Black-Out: 3D plot of the output variables generated by RAVEN-MAAP. 
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Figure 80. PWR Station Black-Out: histograms of the input variables sampled by RAVEN. 

For this test case we chose to use a Mean-Shift clustering techniques (see Section 4.4.3) where we considered 
again the full temporal profile of the output variables. From this analysis we were able to obtain 6 clusters: 

1. Cluster 1 (see Figure 81): this cluster contains scenarios characterized by early failure of the charging 
pump, early battery failure and a late turbine-driven auxiliary feed-water. This combination of events 
caused a late and rapid decrease in the reactor water level. 

2. Cluster 2 (see Figure 82): this clusters contains scenarios characterized by early failure of the charging 
pump and small SEAL leakage. The combination of events lead to temporary drop of the water level 
within the core which is restored by the plant safety systems. 

3. Cluster 3 (see Figure 83): this cluster contains a single scenario which is characterized by early failure of 
the charging pump, early battery failure and a late turbine-driven auxiliary feed-water. This is very similar 
to Cluster 1 except that the drop in the water level is much slower.  

4. Cluster 4 (see Figure 84): this clusters contains scenarios characterized by early failure of the charging 
pump, early AC recovery and small SEAL leakage similar to Cluster 2. The combination of events lead to 
very quick drop of the water level within the core which is restored by the plant safety systems. The 
characteristic difference with Cluster 2 is that the primary system pressure reach a smaller steady state due 
to the fact that the operators in these scenarios are following ECA-0-2 procedure where feed and bleed is 
active. 

5. Cluster 5 (see Figure 85): this clusters contains scenarios characterized by: a quick drop and recovery of 
core water level and a rapid drop in the primary system pressure. For some scenarios a quick recovery of 
system pressure and a second drop occurs. These scenarios are characterized by large seal LOCA and 
subsequently an early AC recovery after that ECA-0-1 is followed. 

6. Cluster 6 (see Figure 86): this cluster contains a single scenario in which core water level slowly drops 
while system pressure quickly drops at about 50% its nominal value. Compared to cluster 3 which has a 
similar temporal behavior, it is caused by an early failure of the DC system and an early auxiliary feed-
water failure. 
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Figure 81. PWR Station Black-Out: analysis of Cluster 1. 
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Figure 82. PWR Station Black-Out: analysis of Cluster 2. 
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Figure 83. PWR Station Black-Out: analysis of Cluster 3. 
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Figure 84. PWR Station Black-Out: analysis of Cluster 4. 
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Figure 85. PWR Station Black-Out: analysis of Cluster 5. 
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Figure 86. PWR Station Black-Out: analysis of Cluster 6. 

 

7.4.3 Analysis Summary 

In summary, using the analytical model data set we were able to gather the following information: 

 The combination of early failures of both charging pump and battery failure along with a late turbine-
driven auxiliary feed-water causes the system to reach a very fast and late core uncover event. 

 A very early recovery of AC power is the only variable to counter a large seal LOCA. This events causes 
a quick drop an recovery of the water level and an end state primary pressure about half of what is 
expected. 

 Both operating procedures (ECA-0-1 and ECA-0-1) are effective with an early AC power recovery (water 
level drop is very similar). A small seal LOCA gives more timing margins 
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 A large seal LOCA is a certain major contributor to system failure 

 

7.5 Spent Fuel Pool 

7.5.1 Model Description 

In the framework of the DOE/LWRS/RISMC Project – Industry Application #2, a RELAP5-3D [35] code 
thermal-hydraulic model of a spent fuel pool (SFP) has been developed [36]. The scope of the model has been 
methodology testing for investigate External Events by deterministic and PRA codes. The RELAP5-3D SFP 
model has been coupled with the EMRALD and the RAVEN codes for estimating the fuel damage frequency in 
case of earthquake-induced components faults. The RELAP5-3D model is a simplified model of a NPP SFP (see 
Figure 87). 

 

Figure 87. Model is a simplified model of a NPP SFP. 

Since the scope of the RELAP5-3D model was methodology proving, a limited number of thermal-hydraulic 
nodes have been used in order to achieve fast-running calculations. E.g., one calculation simulating one-day 
transient (86400 seconds) could be run in 120 seconds of computer time. A sketch of the model is shown in 
Figure 88. The characteristics of the RELAP5-3D nodalization are reported in Table 3.  
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Figure 88. RELAP5-3D SFP model. 

Table 3. RELAP5-3D SFP Nodalization characteristics. 

Parameter Value 

Number of TH Nodes 43 

Number of Junctions 49 

Number of HS  16 

Number of HS meshes 192 

 

The heat load of the SFP is equivalent to the 1/3rd of the decay heat load of a ~2.5 GWth Westinghouse 3-
Loop PWR core (157 Fuel Assemblies). The thermal-hydraulic channels of the fuel elements have the 
characteristics of a 15x15 Westinghouse PWR Fuel Assembly (see Figure 89). The water volumes of the SFP 
have been scaled according to the modeled heat load. 
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Figure 89. 15x15 PWR Westinghouse Fuel. 

The two independent cooling systems have been modeled as boundary conditions by time-dependent 
junctions. They remove warm water from the pool bottom and inject the cooled water on top of the fuel 
assemblies. Natural circulation can be calculated by the code as well thanks to the nodalization set-up. The top 
of the pool is connected with a time-dependent volume modeling SFP building atmosphere.  

In order to simulate a SFP break by earthquakes, two valves have been added on the SFP bottom. They can 
simulate large and medium breaks, with an opening time of 5 seconds. The steady-state conditions are achieved 
by the model are reported in Table 4. 

Table 4. RELAP5-3D SFP steady-state conditions. 

Parameter Value 

Average Water 
Temperature 

320 K 

Fuel Heat Load 1.1 MW 

 

A set of control logics has been implemented for simulating possible transients. They are reported below: 

 Cooling pumps trip if one of these conditions are met  
o SFP liquid level < 0.1 m 
o SFP temperature > 349 K 

 Operator SFP refill by emergency pumps actuation if both conditions are met: 
o Both recirculation pump failed 
o Time > Recovery Time (e.g., 30 minutes) 

 End of calculations if fuel failure: Tclad > 1477 K (2200 F)  
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As an example, a loss of both cooling systems without recovery action by the operator is reported hereafter. 
The cooling systems fails after 1hr, leading to the boiling and to the dryout of the SFP water (water level drops 
to the top of active fuel in ~6 hours). Then fuel overheating and failure is achieved ~10 hours (Figure 4-6). 

 

Figure 90. SFP test case: plot of SFP cooling system mass flow, SFP water level and Fuel Clad 
Temperature for an example scenario. 

 

7.5.2 SFP  Data Analysis 

Using RAVEN we performed a Monte-Carlo sampling of the stochastic variables and generated a database 
of 2000 time series. Due to the heavy calculation load, this operation was performed on high performance 
computing (HPC) system available at INL: falcon cluster server18. The sampled stochastic variables are the 
following: 

1. 20600700:6 which is time of LOCA 

2. 20600560:6 which is pump1 failure time  

3. 20600570:6 which is pump2 failure time 

4. 1000101:3 which is size of the break 

5. 20600610:6 which is the time required for operator to perform recovery action 

The resulting database (HDF5 format) was downloaded and analyzed on a personal laptop using again 
RAVEN. The plot of the time series for six of the output variables are shown in Figure 91 while the histograms 
of the final clad temperature and simulation ending time are shown in Figure 92. 

In order to determine the output variables to be considered in the clustering process we plotted in 3D the 
time series by considering a different pair of out variables for each plot (see Figure 93). Note from Figure 93 

                                                      

18 600 TFlops of performance, 19872-core SGI ICE X distributed memory cluster, 103 TB total memory. 



 

84 

that all 6 variables are highly correlated; thus we have decided to perform clustering on the time series by 
considering only one output variable: httemp_60008_12. As a record, the histograms of the 5 sampled variables 
are shown in Figure 94. 

 

 

 

 

Figure 91. SFP test case: plot of all time series generated by RAVEN-RELAP5. 
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Figure 92. SFP test case: histograms of the temperatures at the end of the simulation (left) and simulation 
end timings (right). 

 

 

 

Figure 93. SFP test case: 3D plots of the five output variables; note the high correlations among them. 
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Figure 94. SFP test case: histograms of the five sampled variables. 

Regarding the data analysis of this big dataset, we performed a series of clustering operations using several 
algorithms as follows: 

1. We initially performed a hierarchical clustering coupled with DTW distance metric (Figure 95). From 
here we were able to clearly partition the data set into two clusters: 

a. Cluster 1 (see Figure 96): this cluster contains all simulations that led to system failure outcome. In 
addition this cluster contains also a few simulations that even though they did not led to system 
failure.  By looking at the Figure 96, these simulations can be observed at the far right of the top left 
plot. These simulations would have actually led to system failure outcome if the simulation end-
time stopping condition would have not met; thus, they can be considered as “false positives”. 

b. Cluster 2 (see Figure 97): this cluster contains all scenarios that led to system success outcome. 
Note that many scenarios have very high clad temperatures due to the fact that system recovery 
occurred prior system failure event. 

2. We then considered time series contained in Cluster 2 and on it we performed a further clustering using 
Mean-Shift. Given the structure of this data set, we were able to obtain again two clusters: Cluster 1_1 
(see Figure 98) and Cluster 1_2 (see Figure 99). By looking at the temporal profiles of the scenarios 
contained in each cluster it is possible to observe that the temperatures at the end of the transients are 
significantly different: in the [350,400] interval for Cluster 1_1 and in the [700,1100] interval for 
Cluster 1_2.  
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Figure 95. SFP test case: dendrogram obtained by the hierarchical algorithm. 
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Figure 96. SFP test case: Cluster 1 data analysis. Plot of the time histories contained in this cluster and 
histograms of the sampled variables. 
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Figure 97. SFP test case: Cluster 2 data analysis. Plot of the time histories contained in this cluster and 
histograms of the sampled variables. 
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Figure 98. SFP test case: Cluster 1_1 data analysis. Plot of the time histories contained in this cluster and 
histograms of the sampled variables. 
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Figure 99. SFP test case: Cluster 1_2 data analysis. Plot of the time histories contained in this cluster and 
histograms of the sampled variables. 

We investigated furthermore the differences among Cluster 1_1 and Cluster 1_2 by considering the SFP 
water level (see Figure 100). Figure 100 shows that SFP the water level distribution has lower mean and 
variance for Cluster 1_2. By observing both Figure 99 and Figure 100 we can deduce that the only a 
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combination of seal LOCA size (1000101:3), seal LOCA timing (20600700:6) and operator action timing 
(20600610:6) values create such different behavior. Thus, we studied the combination of these three input 
variables by scatter plotting each simulation run in this 3D input space (see Figure 101). What we obtained is 
very unexpected: 

 Simulation runs in Cluster 1_2 are characterized by values the [0.01,0.04] interval range for seal LOCA 
size and lower values for seal LOCA timing 

 Simulation runs in Cluster 1_1 are characterized by values outside the [0.01,0.04] interval range for seal 
LOCA size and lower values for seal LOCA timing and higher values of LOCA timing 

 Note that the cloud of points shown in Figure 101 of Cluster 1_1 appear to surround the left, right and top 
boundaries of the cloud of points of Cluster 1_2 

 

 

Figure 100. Plot of SFP water level temporal profiles (top) and histogram of water level at the end of 
simulation time (bottom) for the scenarios belonging to Cluster 1_1 (left) and Cluster 1_2 (right). 
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Figure 101. Scatter plot of three stochastic variables for the scenarios in Cluster 1_1 and Cluster 1_2: seal 
LOCA size (1000101:3), seal LOCA timing (20600700:6) and operator action timing (20600610:6). 

 

7.5.3 Analysis Summary 

In summary, using the analytical model data set we were able to gather the following information: 

 The first level clustering revealed a small subset of simulations (6 runs) which even though they could be 
considered success only because the mission time stopping condition happened right before failure 
outcome was met. Thus, these simulations can be considered as false positive (i.e., simulation runs 
characterized by a false successful system outcome). Only by employing a first-derivative time series re-
sampler coupled with hierarchical clustering with DTW warping it was possible to discover these false 
positive. The factor that clearly characterizes these clusters is the operator recovery timing. A value of 
10000 seconds for operator recovery timing is the threshold level. 

 The most relevant data exploration occurred at the second level clustering where only simulation runs 
leading to a successful outcome. Here we noticed two clear trends in the generated simulations:. 

By looking at Figure 92 (i.e., the histogram of the final temperature for all simulation runs) it was possible 
to identify such distinction but classical statistical methods would have failed to create a clear partition of 
the dataset. We were able to obtain such clear separation by partitioning the data set into three clusters 
(i.e., Cluster 1, Cluster 1_1 and Cluster 1_219) obtained by employing clustering in two levels (see Figure 
102). 

The scatter plots shown in Figure 101 indicate that depending on the values of seal LOCA size, seal 
LOCA timing and operator action timing create two behave in the SFP in term of final clad temperature 
and SFP water level. 

                                                      

19 Recall that Cluster 2 is the union of Cluster 1_1 and Cluster 1_2 
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Figure 102. Histogram of final clad temperature for the clusters obtained in both clustering levels. 
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8. DATA VISUALIZATION 
 

In this section we briefly describe one of the most recent development in RAVEN regarding analysis of 
complex data set. This development initially started as an INL internal LDRD as a collaboration between INL 
and University of Utah (Scientific Computing and Imaging Institute). The summary of the LDRD R&D activity 
is summarized in [37]. In this section we briefly described what features has been added into RAVEN and how 
they can be employed to analyze complex data sets using the SFP test case. 

 

8.1 Background 
The topological post-processor applies a technique called Morse-Smale regression (MSR) [38] in the 

context of sensitivity analysis. MSR builds upon a domain partitioning of a dataset induced by the Morse-Smale 
complex (MSC) and employs a linear regression fit within each partition, thereby exploiting its monotonicity. 
Figure 103 shows the MSC of a 2D test function with four maxima and nine minima. The MSC decomposes the 
domain into 16 partitions such that each partition can be well approximated by a linear model as shown in 
Figure 103. The MSC itself has been successfully utilized in visual exploration of simulation data modeled as 
high-dimensional scalar functions [39]. 

 

 

Figure 103. (a) Morse-Smale complex of a 2D height function that induces a partitioning of the domain. 
(b) Linear models are fit to each monotonic partition. 

The topological characteristics of the MSC are at the core of MSR. Here, we give a high-level description; 
see [40] for details. The MSC partitions the domain of a scalar function into monotonic regions, where points in 
each region have gradient flow that begins at the same local minimum and ends at the same local maximum of 
the function. Furthermore, the MSC can be simplified based on the notion of topological persistence to create a 
hierarchy of features that can be simplified according to a scale parameter differentiating signal from noise [41]. 
For a fixed scale, the main idea behind the simplification is to merge its corresponding partitions based on a 
measure of their significance (i.e., persistence); see Figure 104 below for an example applied to the MSC of a 
2D height function. 
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Figure 104. Example of persistence simplification of a local maximum (x) by pairing and cancelling it with 
the saddle point (y). The result is shown at right where the gradient is simulated to flow to the more 

persistent local maximum (z). 

For point cloud data, the MSC can be approximated [42], enabling MSR to be applied in high dimensions. 
Points are connected by neighborhood graphs such as the k-nearest neighbor (kNN) graph, and gradients are 
estimated along the edges of the graph. In our context, we utilize similar approximation schemes [43] where 
points are connected using the relaxed Gabriel graph, which have been shown to give superior results in 
extracting topological features [44] compared to the kNN graph. 

For our analysis, we use least square linear regression to fit each partition. To obtain the coefficient 
estimates, such a least squares fitting minimizes the sum of squared residuals. For a given partition with n data 
points, let y = [y1,..., yn]

T be the n-by-1 vector of observed response values, X be the n-by-m design matrix of the 
model (that is, Xij is the j-th dimension of the i-th data point), and β be the m-by-1 vector of coefficients. We 
minimize the error estimate: 

ሺβሻݏ ൌ෍ቌݕ௜ െ෍ ௜ܺ௝β௝

௠

௝ୀଵ

ቍ

ଶ
௡
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In matrix form, we obtain the coefficient estimates β෠  in the following way:  

β෠ ൌ min݃ݎܽ
ஒ
ሺβሻݏ ൌ ሺࢄ்ࢄሻିଵ(34) ்࢟ࢄ 

We use the regression coefficients β෠ i (1 ≤ i ≤ m) to evaluate the sensitivity of the i-th dimension.  

For a given partition fitted with a linear regression model, it is important to evaluate how well the data 
points fit the model by computing the coefficient of determination, or the R2 score. Given a partition with n data 
points, for the i-th data point, yi is the observed response value and ݕො௜ ൌ ∑ ௜ܺ௝β௝

௠
௝ୀଵ  is the fitted response value. 

The coefficient of determination is computed as: 

ܴଶ ൌ 1 െ
∑ ሺݕ௜ െ ො௜ሻଶݕ
௡
௜ୀଵ

∑ ሺݕ௜ െ തሻଶ௡ݕ
௜ୀଵ

 (35) 

We extend such a notion by ranking and considering how many input dimensions are sufficient to provide an 
optimal fit. We select a subset of input dimensions for the n data points, apply least square linear regression on 
these points with reduced dimensions, and evaluate the R2 score of the linear fit. The closer the value of R2 is to 
1, the better the linear regression fits the data with the selected subset of input dimensions. 

 

8.2 SFP Data Analysis 
We have pre-processed the time-dependent SFP simulation data (see Section 7.5) by extracting the 

maximum temperature (httemp_60006_12) from each simulation in order to analyze the data using RAVEN’s 
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topological post-processor. The topological post-processor is useful for breaking down multimodal data into 
monotonic or approximately monotonic regions/clusters where coherent sensitivity information can be extracted 
per cluster of the data. The partitioning is hierarchical and thus can be interactively explored in order to 
determine if the data is multimodal and how well each cluster can be described by a local linear fit.  For more 
detail, [45] explains the user interaction and visual interface of the topological post-processor available in 
RAVEN and the details of the algorithm are given in Section 8.1.   

In this study, we analyzed the maximum temperature of the RELAP5 simulations as a function of a five-
dimensional input space defined by the variables 1000101:3, 20600560:6, 20600570:6, 206000610:6, and 
20600700:6. 

The RAVEN high-dimensional data visualization tool applied to the SFP is shown in Figure 105. This tools 
re-construct the desired output variable (i.e., max clad temperature) as a function of the 5 input variables 
(previously sampled by RAVEN). The top-left image shows the topological connections between local minima 
(blue triangle in the top-left figure) and local maxima (red triangle in the top-left figure). For the SFP case 4 
connections were identified (green, purple, kaki and blue). For each connection a sensitivity analysis is shown in 
the right plots of Figure 105. In addition, Figure 106 and Figure 107 shows the capabilities recently developed in 
RAVEN where a scatter plots of the scenarios contained in each minima-maxima connection in the input-sapce 
can be generated. 

 

Figure 105. RAVEN high-dimensional data visualization tool for the SFP data (1). 
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Figure 106. RAVEN high-dimensional data visualization tool for the SFP data (2). 

 

Figure 107. RAVEN high-dimensional data visualization tool for the SFP data (3). 
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9. CONCLUSIONS 
 

This report summarizes the R&D activities performed during the FY2016 regarding data mining to time-
dependent data. We have structured this development to leverage the existing RAVEN capabilities (i.e., data 
mining of static data) and include new algorithms and methods ad-hoc to analyze time-dependent data. 

We have indicated several data analysis directions that can be employed to analyze time-dependent data. It 
is important to highlight that these directions are not valid only for RISMC type of applications. Regarding 
RISMC type of applications we have shown several test cases that employed both analytical models but also 
nuclear industry codes such as RELAP5-3D and MAAP. 

The objective of these test cases was to provide possible analysis direction when dealing with nuclear 
transients. We have shown how it was possible to create a mapping between: 

 simulation temporal profile 

 simulation outcome  

 timing and sequencing of events.  

This is the kind of information that is relevant from a PRA point of view (and thus also a RISMC one). 

It is relevant to highlight that, even though it was not explicitly shown in this report, such analysis methods 
and algorithms were successfully employed to detect and resolve issues and errors located in the model and in 
the data generation step. Some of these issues that could have not been detected with classical data analysis 
methods were for example: 

 Erroneous implementation of the system dynamic (e.g., wrong simulation time step) 

 Erroneous implementation of the system control logic (e.g., wrong activation threshold of components) 

 Wrong implementation of the data management of the statistical framework during the data generation 
phase (e.g., Monte-Carlo sampling or Dynamic Event Tree) 

Thus, such analysis greatly improved the quality and the understanding of the data generated. Classical methods 
to perform data analysis would have not been able to reach such a level of data exploration. 

In this report we have also shown how it was possible to measure reliability importance of components in a 
simulation based PRA environment (such as RISMC). The analyses presented in this report resemble the ones 
performed using risk-importance measures in a classical PRA environment (such as SPAR models). In our case 
we focused the attention more the link between timing/sequencing of events and sampled variables with 
simulation temporal profile without explicitly considering any probabilistic type of information (see 
confirmation in the next section). 

In conclusion, the development of the RAVEN code during FY16 has provide capabilities to the code itself 
in terms of time-dependent data mining that no other software product (commercial or open-source) can offer. 
These capacities must be looked not only from a RISMC (or in general simulation-based PRA) perspective but 
also to a more broad engineering perspective that includes: scenario forecasting (predictive capabilities), code 
calibration on time-dependent data etc.  

 

9.1 Possible Future Developments 
Given what has been presented in this report we thought it would be worth presenting a set of development 

directions which would further improve the effectiveness of RAVEN to perform data mining: 

 Interactive data mining: this capability would allow the user to actively explore data while RAVEN is 
running and perform any type of data post-processing without the need to modify the RAVEN input file 
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and re-run RAVEN itself. As an example would be make the hierarchical clustering interactive so that the 
user can interactively change the threshold level and every time the threshold is change RAVEN perform 
the processing of each obtained cluster in real-time. 

 In the previous section we mentioned the concept of risk-importance measures. These concepts belong 
mainly to classical PRA methods (which are based on static logic structures such as event-trees and fault-
trees). The next suggest development would include the inclusion and adaption of similar risk-importance 
measures in a simulation-based PRA environment such as RISMC. 

 As of now RAVEN input file (which is in .xml format) can be edited using any available text editor 
(freely available on both Mac and Linux). We have experienced that the RAVEN input file for the data 
mining of complex data sets (e.g., SFP data) may be very long and complex. This can cause input error 
that can be caught after RAVEN has completed the analysis. Thus we recommend the development of a 
Graphic User Interface (GUI) that can facilitate the user to create complex RAVEN input files. The ideal 
case would be a drag-and-drop user interface where RAVEN components are graphically shown and 
linked together. An example of open-source is Sirius (http://www.eclipse.org/sirius/overview.html) and it 
is shown in Figure 108. 

 

Figure 108. Example of drag-and-drop GUI where components are graphically shown and linked 
together. 
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