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ABSTRACT 

 
Risk Analysis Virtual Environment (RAVEN) is a generic software 

framework to perform parametric and probabilistic analysis based on the 
response of complex system codes. The goal of this type of analysis is to 
understand the response of such systems, in particular with respect to their 
probabilistic behavior, and to understand their predictability and drivers or lack 
thereof. The ultimate focus of such type of analysis is risk analysis. 

Data mining capabilities are cornerstones to perform such deep learning of 
system responses. For this reason, static data mining capabilities were added to 
RAVEN in fiscal year 2015. 

In real applications, when dealing with complex multi-scale, multi-physics 
systems, it seems natural that, during transients, the relevance of the different 
scales, and physics, would evolve over time. For these reasons, the data mining 
capabilities have been extended to allow their application over time. 

This report describes the new RAVEN capabilities implemented with several 
simple analytical tests to explain their application and highlight the proper 
implementation. 

This report concludes with the application of those newly-implemented 
capabilities to the analysis of a simulation performed using the Bison Implicit 
Simulation of Nuclear Fuels (BISON) code. 
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Time-Dependent Data Mining in RAVEN 
1. INTRODUCTION 

The overall goal of the Risk Analysis Virtual Environment (RAVEN) software is to understand the 
probabilistic behavior/response of complex systems. In particular, RAVEN is focused on risk analysis. 
The capability to predict the likelihood that the system under consideration will end in a particular region 
of the output space, which is the base of the risk analysis, is already an available feature of the RAVEN 
code. Those types of analyses rely on the availability of probability distributions and sampling strategies, 
according to which the input space of the probabilistic systems are explored, and statistical 
post-processors used to understand the sources of dispersion of the system response. 

In Fiscal Year 2015, RAVEN capabilities were extended to provide the tools to engineers to better 
understand the reasons/drivers of the system responses by adding advanced static data mining capabilities 
(e.g., clustering, principal component analysis [PCA], manifold learning) [1]. 

While the added capabilities showed a potential. it was clear that the static analysis was not sufficient 
to capture the complexity of system responses during transients. In fact, systems of interest, during 
transients, showed alternation of the physical phenomena characterizing the response. This made a static 
approach too narrow to characterize the system response. For this reason, during fiscal year 2016, the 
RAVEN infrastructure was extended to support data mining over time, or time-like variables. 

Section 2 of this report addresses the basic and advanced static data mining capabilities that have 
been impacted by the new RAVEN infrastructure changes. Section 3 addresses the approach used to port 
such capabilities over the time domain. Finally, Section 4 discusses the simple analytical cases used to 
demonstrate the proper implementation of the algorithms and their use. 

It is worth mentioning that given the high modularity of the RAVEN code, the creation of an 
infrastructure to analyze data over time adds this feature automatically to the already-existing 
post-processing capability beginning with the basic statistical relational analysis and ending with 
clustering and dimensionality reduction. 

The report concludes with the application of the newly developed capabilities to a simulation 
performed using the Bison Implicit Simulation of Nuclear Fuels (BISON) code. 

Appendix A includes the modification to the user manual as a consequence of this activity and 
Appendix B lists the new regression tests implemented. 

2. EXISTING DATA MINING CAPABILITIES 
Data mining is the computational process of discovering patterns in large datasets that involves 

methods from artificial intelligence, machine learning, statistics, and database systems. The overall goal 
of data mining is to extract information from a dataset and transform it into understandable structure. 

This section reports briefly the mathematical formulation of the most relevant post-processing 
capabilities in RAVEN that the changes in the RAVEN code infrastructure extended from static to time 
dependent. The list ranges from the basic statistical relational analysis to the advanced techniques such as 
clustering and manifold learning. The full list is present in the updated RAVEN User Manual [2]. The 
examples in the following sections will use some additional methodologies, which will be introduced 
briefly directly in the example. One of the main reasons to report the mathematical formulation of the data 
post-processing capabilities that have been extended to the time dependent analysis is to provide guidance 
in the interpretation of the results shown at the end of this report. 
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2.1 Basic Statistical Relational Analysis 
The items reported in this section are the basic statistical relational analyses that are used to 

characterize the relation embedded within the data set. Its use helps and augments the clustering and 
dimensionality reduction analysis. 

This section presents the statistical methodologies that allow quantifying how strongly two (in the 
following generically referred to as X and Y) aleatory variable are related. The analysis presented is 
independent from X or Y being part of the stochastic system input space or output space. RAVEN does 
not make any specific distinction (except in a few cases where a special treatment might be needed) with 
respect to the belonging of X and Y to the input or output space. More specifically, depending from the 
belonging of X and Y to the input/output space, the analysis focuses on different relational aspects: 

• Both X and Y belong to the input space—The relational analysis reveals correlation in the input space 
deriving, for example, from using multivariate distributions or biased sampling strategies 

• One belongs to the input space and one to the output space—The relational analysis reveals 
correlations built by the system response function (the physical model of the system) 

• Both belong to the output space—The relational analysis reveals correlations built by the system 
model among different responses monitored. 

The covariance/variance analysis are a basic data mining capability, which were naturally extended to 
have time-dependent capabilities has consequence of the changes in the RAVEN infrastructure. Once 
paired with the clustering and dimensionality reduction capabilities, they are a useful tool to investigate 
the system behaviors. 

2.1.1.1 Covariance. In a simplistic sense, covariance measures how two variables vary together. In 
other words, it is a measure of correlation of relevant variables. The covariance is said to be 
positive/negative if the relevant variables vary congruently/inversely with respect to each other.  

For two sets of random variables X and Y of N samples, the simplest formulation of the covariance 
matrix is: 

cov(X,Y)= 
1
N ∑

i
 (xi−E(X))(yi−E(Y)).  (1) 

RAVEN possesses also the unbiased version and the weighted biased and unbiased versions. 

2.1.1.2 Correlation. Correlation informs how pairs of variables are related. The Pearson 
product-moment correlation coefficient matrix can be calculated from the covariance matrix as: 

𝛤 𝑋,𝑌 = !"#(!,!)
!!!!

. (2) 

2.1.1.3 Sensitivity. Sensitivity analysis is aimed to assess how sensitive two variables are to each 
other variation. They relate the ratio of rate of change of one function to the rate of change of another. It 
may be seen as somehow related to the derivative of one function with respect to another or as a slope. 
RAVEN uses sets of data and statistically measures sensitivities. The sensitivity option uses the least 
square linear regression for which that formula is: 

𝛽 = 𝐗!𝐗 !!𝐗!𝐘   (3) 

where   𝛽 is the unknown parameter in the regression. Note that RAVEN repeats the process for each 
target variable so that all the variables are used as both X and Y. 
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2.1.1.4 Variance-Dependent Sensitivity. Variance-dependent sensitivity matrix is the matrix of 
sensitivity coefficients that show the relationship of the individual uncertainty component to the standard 
deviation of reported value for a test item. The variance-dependent sensitivity matrix VS is calculated for 
datasets X and Y as: 

𝐿 𝑌 𝑋 = 𝐄 𝑌 + 𝑐𝑜𝑣 𝑋,𝑌 𝑣𝑐!! 𝑋 𝑋 − 𝐄 𝑋 . (4) 

From which the sensitivity coefficient is given by: 

𝑐𝑜𝑣 𝑋,𝑌 𝑣𝑐!! 𝑋  (5) 

where 𝑣𝑐 𝑋  is the symmetric matrix with (𝑣𝑎𝑟 𝑋! , 𝑣𝑎𝑟 𝑋! ,… , 𝑣𝑎𝑟(𝑋!)) as the diagonal. Note that 
RAVEN repeats the process for each target variable so that all the variables are used as both X and Y. 

 

2.2 Clustering 

A loose definition of clustering is the grouping of objects with similar properties. Closeness 
according to some predefined metric is the main property we look at to define clusters. Several closeness 
metrics exist in literature [3,4,5]. These different metrics lead to different clustering algorithms. In this 
section, we will discuss several such clustering algorithms currently available in RAVEN. 

The list of the clustering algorithms that has been ported to be time dependent includes the following: 

• Affinity Propagation 

• Density- Based Spatial Clustering of Applications with Noise (DBSCAN) 

• Gaussian Mixture Model with Dirichlet Process 

• Gaussian Mixture with Expectation Minimixation 

• Gaussian Mixture with Variable Bayesian 

• K-Means 

• Mean Shift 

• Mini Batch K-Means 

• Spectral Clustering (applies K-means in a reduced dimensionality space that is based on an 
embedding of the affinity matrix of the dataset). 

Except for the spectral clustering. which theory is very similar to the K-means, a short theoretical 
explanation of the different clustering algorithms is provided below. 

2.2.1 K-Means 
Given a dataset, D of size N, the K-means algorithm separates D into K clusters, Ck where k=1,2,3...K 

such that all K clusters have equal variance. Here, K must be specified beforehand. This K-means 
algorithm is also known Lloyd’s algorithm. The main aim of this algorithm is to choose centroids such 
that the inertia or within-cluster sum of squares criteria: 

∑
i=0

K
  ⎝
⎛

⎠
⎞||xk−µi||

2 , (6) 

is minimized,  
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where 

µi = mean value of samples (centroid) within respective clusters 

xk = sample value in a particular cluster Ck. 

The algorithm is as follows: 

1. Choose the initial K centroids (within-cluster mean value). 

2. Assign the sample to the nearest centroid. Often, Euclidean distance is used to determine the nearest 
centroid. 

3. Upon assignment of each sample to its respective centroid, new centroids are calculated for each 
cluster. The means of the clusters are often chosen to be the new centroids. 

4. Upon assignment of new centroids, check for convergence. In other words, check and see if the 
centroids are still moving by checking if the difference between the new and the old centroids is 
below a predefined tolerance. 

This algorithm essentially has two drawbacks: 

1. The minimization criteria makes an assumption that clusters are convex and isotropic. This is not 
always true. 

2. The minimization criteria is not normalized. Thus with increasing dimension, where the Euclidean 
distances become inflated, this is not a criterion. 

In RAVEN, most of the data-mining methods are available through Scikit-learn [6]. The K-means 
method can be accessed in RAVEN through the “KMeans” post-processor. 

Another way to access the K-means algorithm is through “MiniBatchKMeans.” This uses subsets of 
original input data, randomly sampled in each training iteration. The aim is to reduce the computational 
time taken by the K-means algorithm while still optimizing the same function. Just like the original 
K-means algorithm, the mini-batch K-means algorithm is as follows: 

1. Form mini-batches by randomly choosing n samples. 

2. Assign these samples to the nearest centroid. 

3. Update centroids by taking streaming average of sample and all previous samples assigned to the 
centroid. 

4. Check for convergence by seeing if the centroids are still moving. Iterate until convergence. 

This method decreases the rate of change of centroid over time, which helps accelerate convergence 
(for that given convergence criteria). However, this is not a true acceleration scheme since the results or 
the original method are not necessarily reproduced. It has been observed that this method produces 
different, less accurate results than the standard K-means algorithm. 

2.2.2 Affinity Propagation 
Affinity propagation is an exemplar-based clustering algorithm. Exemplars are a set of samples that 

represent other samples the best based on a given criterion. This method simultaneously considers all 
samples as exemplars. It sends messages between pairs of samples that eventually determine the 
clustering pattern. Two kinds of messages are primarily sent to determine the suitability of a given sample 
to be the exemplar of the other: 

1. Responsibility R(i,k)—Accumulated evidence that a sample k should be the exemplar for sample i. 
Responsibility function, R(i,k),is: 
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𝑅 𝑖, 𝑘 ← 𝑆 𝑖, 𝑘 −max (𝐴 𝑖, 𝑘 + 𝑆 𝑖, 𝑘,∀𝑘 ≠ 𝑘  (7) 

where 

S(i,k) = pairwise similarity function that defines how well sample k represents sample i. 

2. Availability A(i,k) —Accumulated evidence that sample i should choose sample k to be its exemplar. 
Availability function, A(i,k), is: 

𝐴 𝑖, 𝑘 ← min 0,𝑅 𝑘, 𝑘 + 𝑅 𝚤, 𝑘! ! ∉!,!   (8) 

Therefore, exemplars must be similar to several samples and must be chosen by several samples to 
represent them. Roughly, the affinity propagation algorithm can be summarized as follows [7]: 

1. Define a set of pairwise similarity functions, S(i,k). This function can be user defined. In general, 
squared Euclidean distance is chosen to be the similarity function. Choose all samples as exemplars to 
initially have responsibility equal to zero. 

2. Set all availabilities to zero. 

3. Calculate the response and availability function for all samples. 

4. Calculate 𝐶! = max!(𝐴 𝑖, 𝑘 + 𝑅 𝑖, 𝑘 ) where i=1,2,...N. This is where an examplar is assigned to 
sample i. In other words, if for sample i, sample k has the maximum availability-plus-responsibility 
value, then sample k will be the examplar of sample i. 

In case there are contradictory results, one K-medoids (K-means but with medoids instead of means) 
run might be necessary. Dueck 2009 [7] presents an in-depth presentation of this algorithm. In RAVEN, this 
algorithm is accessible through the “AffinityPropagation” post-processor. 

2.2.3 Density-Based Spatial Clustering of Applications with Noise 
Clusters are formed by identifying high sample density areas separated from low sample density areas. 

The DBSCAN clusters can be of any arbitrary shape. The main concept behind this algorithm is that of core 
samples. Core samples are the areas of high sample density. These are defined using two parameters—
cardinality, d and distance ε. Higher cardinality and lower distance indicate higher sample density required 
to form clusters. 

 Formally, a core sample is a sample in the dataset with cardinality greater than or equal to d with 
distance ε. The samples inside distance ε are called neighbors. A cluster is then built from core samples 
recursively by taking core samples, finding all neighbors that are core samples, finding their neighbors that 
are core samples, and so on. The cluster also incorporates samples that are not core samples themselves but 
are neighbors of core samples. 

The DBSCAN algorithm may be summarized as follows: 

1. Input d and ε. 

2. For a given dataset, determine core samples Ci and neighbors. 

3. Take union of core samples Ci and Cj if Ci∩Cj≠φ over all core samples. 

Step 3 of the above algorithm will return separated clusters. Note that this will not always be able to 
cluster all the points since some points can be too far from other points, and so this algorithm can return 
outliers. In RAVEN, this algorithm can be accessed using the “DBSCAN” post-processor. 

2.2.4 Mean-Shift 
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This clustering algorithm is a nonparametric algorithm that does not require the number of clusters as an 
input. It automatically selects the number of clusters based on the bandwidth—the size of regions to search 
through and number of local minima that result from the bandwidth specification. It is a centroid-based 
algorithm that works by updating centroids to be the mean of points within a given region. 

Assuming the bandwidth returns a neighborhood N(xi) around centroid xi , the mean shift vector, s(xi), is 
defined as follows: 

s(xi)= 

 ∑
xj∈N(xi)

 K(xj−xi)xj

 ∑
xj∈N(xi)

 K(xj−xi)
, (9) 

where 

K(xj−xi) = kernel function used for the weighted mean.  

This mean shift vector is computed for each centroid that points towards the region of maximum increase in 
the density of points. Now given a centroid xi for iteration, k, the updates are given as: 

xi,k+1=xi,k+s(xi,k).  (10) 

The mean shift algorithm can be summarized as follows: 

1. Initialize with a random centroid. 

2. Assign members to this centroid based on bandwidth. 

3. For points unassigned, choose other centroids at random until each point is assigned to a centroid. 

4. Calculate the mean of each neighborhood’s 𝑥!. 

5. Shift the mean by mean shift vector s(xi). 

6. Calculate the members in the new neighborhoods. 

7. Check for convergence. When centroids move less than specified tolerance, the method is converged. 

Detailed explanation of theory and applications can be found in [8] and [9]. In RAVEN, this 
functionality is provided using the “MeanShift” post-processor. 

2.2.5 Gaussian Mixture Model Based Clustering 
2.2.5.1 Gaussian Mixture Model. For a given dataset, D, Gaussian mixture model (GMM) 
assumes that all the samples in D can be generated from the linear combination of a finite number of 
Gaussian distributions of unknown parameters. According to the Scikit-learn manual, this model may be 
thought of as a generalization of K-means clustering to incorporate information about the covariance of D 
as well as centers of hidden (or latent) Gaussians.  

These Gaussians of unknown parameters can be estimated using different methods: expectation 
maximization (EM), variational Bayesian, and Dirichelet process (DP). A detailed explanation of the 
GMM algorithm with EM can be found in Russell and Norvig [10]. A brief summary of their presentation 
is provided below. 

Let the mixture distribution that presumably generates the dataset be D. Distribution D has n 
Gaussian components. A data point may be generated by choosing a component Gaussian and sampling 
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from that component. If Ci is a component of D, where I = 1, 2,...N, then the mixture distribution is given 
by the following linear combination: 

D(x)= ∑
i=1

N
 wiCi. (11) 

where 

ith = Gaussian component, Ci, of mixture Distribution D has parameters µi and covariance Σi.  

Now, given a dataset, the clustering problem is to recover a GMM from a given dataset. It is not known 
beforehand what component of the GMM produces which sample from the dataset. The parameters for 
constituent components of the GMM are also unknown. Thus, there must be a method to estimate these. 
This is where the different estimation methods come in. First, we look at EM. 

2.2.5.2 Expectation Maximization. First, we assume that we know the components of the GMM 
(generated at random—they may be centered on a sample or learned using K-means), then for each 
sample in the dataset, we find the probability that the sample belongs to each component. After that, each 
component is fitted to the entire dataset and each sample is weighted by the probability that it belongs to 
that component. We iterate on this process until convergence (i.e., parameters of components no longer 
change). This algorithm may be summarized as follows [10]: 
1. Initialize the GMM parameters. 

2. Compute probability, pi,j , that sample xj was generated using component Ci. 

3. Compute the effective number of data points currently assigned to Ci, ni= ∑
j

 pi,j.  

4. Compute new mean, covariance, and component weights: 

µi← ∑
j

  
pi,jxj

ni
 (12) 

Σi← ∑
j

  
pi,j(xj−µi)(xj−µi)

T

ni
 (13) 

wi← 
ni
N (14) 

5. Check for convergence of parameters and repeat Steps 2 through 4 above until convergence. 

Each component returns a cluster. The clustering analysis based on GMM and expectation 
Maximization can be accessed in RAVEN through the “GMM” post-processor. 

2.2.5.3 Dirichelet Process. The DP does not require the number of clusters as an input. It is a 
prior probability distribution on clustering with an infinite number of components. A classic way of 
explaining how this works is by using the analogy of a Chinese restaurant process. Think of a Chinese 
restaurant with an infinite number of empty tables initially. The first customer takes the first table. After 
that, as the customers arrive, they either join the preoccupied table with a probability proportional to the 
occupancy of that table or they sit on a new table with a probability proportional to the concentration 
parameter α. After a known number of customers sit, we see that only a finite number of tables have been 
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occupied. The higher the α value, the higher the number of tables occupied. Here, for the DP GMM, each 
component of the mixture is analogous to the table and each sample is analogous to the customer.  

Variational inference techniques for the DP work with finite approximations. Inference using Gibbs 
sampling is a common way of inferring mixture components. For exact algorithm and mathematical 
derivation, refer to [11]. 

The clustering analysis based on GMM and the DP process can be accessed in RAVEN through the 
“DPGMM” post-processor. 

This functionality is available in RAVEN through the “DPGMM” post-processor. 

2.2.5.4 Variational Bayesian. The GMM may be implemented with variational inference 
algorithms. Variational inference GMM chooses Gaussians with random initial parameters and minimizes 
the lower bound of model evidence instead of data likelihood. Model evidence incorporates prior guesses. 
Just like with expectation Maximization, the algorithm alternates between finding probability for each 
point to be generated by each mixture component and fitting the mixtures to these assigned points. 
Variational methods add regularization by integrating information from prior distributions. Roughly, this 
algorithm can be summarized as follows [12]: 
1. Given a dataset, initialize parameters and define the number of clusters. 

2. Define variational distributions: variational multinomials, variational Gaussians. 

3. Update the variational multinomial. 

4. Update the mean and variance of variational Gaussian. 

5. Check for convergence of evidence lower bound. 

For a detailed mathematical derivation of the algorithm, refer to [12] and [13]. 

The clustering analysis based on the GMM and variable Bayesian can be accessed in RAVEN 
through the “VBGMM” post-processor. 

2.3 Dimensionality Reduction 
Dimensionality reduction allows the number of dimensions in the problem to be reduced, by 

transforming to a new coordinate system. RAVEN includes a variety of methods for doing this including 
PCA, truncated singular value decomposition (differs from PCA only in the algorithm and the number of 
retained vectors) independent component analysis and practically all the unsupervised learning algorithms 
available in Scikit-learn [6]. These algorithms have to goal to remove redundancy in the data set to make 
its interpretation easier. 

The list of the dimensionality reduction algorithms made available from Scikit-learn and embedded in 
the new time-dependent development of the RAVEN infrastructure is as follows: 

• Exact Principal Component Analysis 

• Fast Independent Component Analysis 

• Kernel Principal Component Analysis 

• Locally Linear Embedding 

• Mini Batch Sparse Principal Component Analysis 

• Multi- Dimensional Scaling 

• Randomized Principal Component Analysis 

• Sparse Principal Component Analysis 
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• Truncated Singular Value Decomposition. 

The theory of all the dimensionality reduction algorithms could be found in Scikit-learn [6] while the 
approach to extend their applicability at the time-dependent domain is explained in Section 3. In the 
following, an exemplification of the theory of the PCA will be presented since it is used in the examples 
in Sections 4 and 5. 

2.3.1 Principle Component Analysis 
PCA is used to analyze correlation between sets of variables. To fix ideas we could consider a set of 

point in a two-dimensional plane as shown in Figure 1. We can notice that the data are mainly dispersed 
in the direction of the longest arrow while the dispersion in the direction of the smallest arrow is minimal. 
PCA has exactly this task, it determines a set of orthogonal directions where the first one is the one along 
which the variance of the data is the highest and the last one is the one with the lowest marginal variance 
[14]. The first direction (component) could be found by: 

𝑤! = argmax ! !! 𝑥! ∙𝐰 !
! . (15) 

where 

w = weight or loading 

𝑤! = first component 

𝑥!= zero centered data point (original value minus the mean).  

The first component’s effect is subtracted out, and then the next component is found. It could be proved 
that those directions are the eigenvectors of the covariance matrix of the data and the ordering (from the 
one which explains the most of the variance to the least) is given by the magnitude of the eigenvalues. 
This provides the most common way to extract the PCA from a dataset. 

The information that could be extracted for the PCA analysis is as follows: 

• The largest component of the eigenvector are strongly related variables (also known as redundant). 
This is usually referred as the load of the component 

• The size of the corresponding eigenvalue or equivalently the amount of explained variance is a 
measure of how much a direction explains the dispersion of the dataset 

• The measure of the cumulative explained variance (sum of the explained variance by each component 
starting from the one corresponding to the largest eigenvalue in decreasing order) could be used to 
determine how many dimensions are necessary to represent the dataset, up to a certain approximation 
on the explained variance. 
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Figure 1. Principle component analysis exemplification (source: https://commons.wikimedia.org/ 
wiki/File%3AGaussianScatterPCA.svg, By Nicoguaro (Own work) [CC BY 4.0 
(http://creativecommons.org/licenses/by/4.0)], via Wikimedia Commons). 

3. EXTENSION TO THE TIME-DEPENDENT DATA MINING 
3.1 Time Slicing 

For the time-dependent data mining (TDM), the data needs to be related to a ‘time-like’ variable. This 
can be any monotonically increasing variable in the input or output of the simulation. RAVEN can 
interpolate so that all the data are synchronized to be on a common time index where for each time step 
all the data are available. For example, if the data from Simulation 1 is available at Times A, C, and E and 
data from Simulation 2 are available at Times B, C, and D, then the data from Simulations 1 and 2 need to 
be interpolated to Times A, B, C, D, and E or some other common set of time steps. RAVEN allows the 
time steps to be chosen in two different ways. The first is the intersection of all points. The second is that 
the user specifies the number of points desired and a grid is created and the data are interpolated to the 
grid. The data are linearly interpolated. The statistics or data mining operation is then run over the data for 
each of the common set of time steps. 

3.2 Inertia-Driven Dampening 
After implementing the time slicing infrastructure in RAVEN, practically all the RAVEN 

post-processors are automatically migrated to become time dependent. While this is very convenient and 
allows a steep extension of RAVEN capabilities, it faces some challenges when applied directly to 
clustering and dimensionality reduction algorithms. 

Focusing on the clustering algorithms, they could be used at each time step but the lack of temporal 
connection between the different time steps might induce unnatural fluctuation of the cluster labeling. 

To fix the idea, we could consider a clustering algorithm identifying two clusters. The algorithm 
applied at two consecutive time steps, t1 and t2,identify two centroids (labeled A and B). Since there is no 
time memory, there is no assurance that Centroid B at t2 is the one that relates to (the most likely 
evolution of) Centroid B at t1. 

See for example, in Figure 2, where for each time step, the K-means algorithm with two clusters is 
used, and the desired cluster labels are marked in red in the figure while the one provided by the code is 
marked in blue. In fact, in this example, the clustering algorithm will correctly divide the data into two 
clusters at each time step, as desired. However, the labeling for each cluster may not stay the same along 
the evolution of time. One possible scenario is marked in the figure as red. In this case, the labeling of the 
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cluster flips at time instance 2.0. Another example is shown in Figure 3, where the cluster centroids are 
plotted. As can be seen, different clusters along the time are labeled the same. 

 
Figure 2. Two cluster example. 

 
Figure 3. Cluster centers. 

To address this issue, in the current implementation, it is assumed that clusters along the time are 
changing slowly, despite the evolvement brought by system dynamics. In other words, we consider the 
cluster has inertia that prevents disruptive changes and therefore it is possible to perform a cluster 
association crossing time step using distance metrics applied between the cluster centroids. Based on this 
assumption, several mapping mechanisms are implemented to post-process the labels returned by 
clustering algorithms. The idea is to define a certain distance metric between cluster i at time t and cluster 
j at time t-1, denoted as dist(i,j), and the goal is then to find the set of exclusive pairs M={(i,j)} such that 
each cluster i for time step t appears exactly once and each cluster j for step t-1 appears exactly once, and 
the global distance is minimal (i.e., 𝑑𝑖𝑠𝑡(𝑖, 𝑗)(!,!)  is minimized). Finally, cluster i at time t and cluster j 
at time t-1 are labeled as the same cluster if and only (i,j) is in M. Currently, four distance metrics are 
implemented; they are briefly described in the following sections. 

1 1 1 1 

2 2 2 2 

2 2 1 1 

1 1 2 2 
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3.2.1 Euclidean Distance-Based Metric 
In this case, the distance between cluster i at time t and cluster j at time t-1 is measured by the 

Euclidean distance between their centroids. Let x1 be the centroid of cluster i at time t and x2 be the 
centroid of cluster j at time t-1. The distance between these two is given by: 

𝑑𝑖𝑠𝑡!" = 𝑥! − 𝑥! ⋅ (𝑥! − 𝑥!) (16) 

3.2.2 Membership-Based Metric 
In this case, the distance between cluster i at time t and cluster j at time t-1 is measured by the joint 

members (i.e., the number of histories that is in cluster i at time t and cluster j at time t-1). Let Point1 be 
all the members of cluster i at time t and Point 2 be all the members of cluster j at time t-1. The distance is 
measured by: 

𝑑𝑖𝑠𝑡 = −size(𝑝𝑜𝑖𝑛𝑡! ∩ 𝑝𝑜𝑖𝑛𝑡!) (17) 

Note here the minus sign is added so that the more joint members there are the smaller the distance is. 

3.2.3 Euclidean Distance with Variance-Based Metric 
In this case, the variance of each cluster is also assumed to have “inertia.” The distance between 

cluster i at time t and cluster j at time t-1 is then measured by the Euclidean distance between their 
centroids plus the difference of the empirical variances. Let x1 be the centroid of cluster i at time t and x2 
be the centroid of cluster j at time t-1, and v1 be the empirical variance of cluster i at time t and v2 be the 
empirical variance of cluster j at time t-1. The distance is measured by: 

𝑑𝑖𝑠𝑡!" =  (𝑥! − 𝑥!) ⋅ (𝑥! − 𝑥!) + |𝑣! − 𝑣!| (18) 

3.2.4 Euclidean Distance with Decay 
In this case, the distance between cluster i, at time t, and the label j is computed based on labels K 

steps back in time (or any other pivot variable). Let x21, x22, … , x2K be the centroids of cluster j at time 
t-1, t-2, … , t-K. The distance between cluster i at time t and the label j is measured by: 

𝑑𝑖𝑠𝑡!" = 𝑥! − 𝑥! ⋅ (𝑥! − 𝑥!)𝑒! !!! !!
!!!  (19) 

In other words, it is the sum of the Euclidean distances between cluster i at time t and cluster j at 
time  t-k for k from 1 to K. Note that the contribution to distance by cluster j at time t-k is decayed by the 
exponential term with decaying rate defined as R (decRate in the code). 

Note that currently this metric is the default to re-map the labels returned by Scikit-learn, with default 
values as K=5 and decRate = 1.0. 

3.2.5 Results 
Figure 4 plots the centroids along the time for Figure 3 after using the re-map function implemented 

(default options: Euclidean distance with decay, k=1 decay rate=1.0). As can be seen, the cluster labels 
are well recognized over different time steps. 
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Figure 4. Remapped cluster centers. 
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4. THEORETICAL EXAMPLES 
4.1 Cluster Example 

This model was created for testing clustering alone. The model equations are as follows: 

𝑥 𝑡 = 𝑥! 𝑢 + 𝑥 + 𝑡 𝑣! 𝑢 + 𝑣!  

𝑦 𝑡 = 𝑦! 𝑢 + 𝑦 + 𝑡(𝑣! 𝑢 + 𝑣!) 

𝑥~𝑁 𝜇 = 0,𝜎 = 0.1 , 𝑦~𝑁 𝜇 = 0,𝜎 = 0.1  

𝑣!~𝑁 𝜇 = 0,𝜎 = 0.01 , 𝑣!~𝑁 𝜇 = 0,𝜎 = 0.01  

𝑢 ∈ 1,2,3 ,𝑃 𝑢 = !
!
, !
!
, !
!

 (Discrete variable) 

𝑥! 1 , 𝑦! 1 = 2,2  

𝑥! 2 , 𝑦! 2 = 4,1  

𝑥! 3 , 𝑦! 3 = 4.5,4  

𝑣! 1 , 𝑣! 1 = 0.1,0.1  

𝑣! 2 , 𝑣! 2 = 0.05,0.2  

𝑣! 3 , 𝑣! 3 = −0.05,−0.2  

The simple clustering model creates 100 points with the base location and initial velocity sampled 
from three different groups (the groups are determined by the sampling over the discrete variable u). The 
initial location and velocity of each point are created by using the base values for the group and then 
adding values sampled from normal distributions centered at 0.0 and with sigma 0.1 (𝑥, 𝑦) for the location 
and 0.01 for the velocity (𝑣! , 𝑣!). Then, as the time increases, each point heads in its direction determined 
mainly by the characteristic group velocity (𝑣! 𝑢 , 𝑣! 𝑢 ). Two of the groups are headed towards each 
other. This model provides a clear and simple test case for use with clustering. 

First, the DBSCAN method was used. For DBSCAN, the method automatically tries to find different 
clusters. As can be seen from the plots in Figure 5, initially at time=0.0, as expected, three distinct 
clusters were found on correspondence of the initial coordinate of each group. As two of the clusters 
approach each other, the clustering algorithm struggles and creates more clusters while it is trying to 
maintain a balanced degree of separation among the clusters. This can be seen in Figure 6 where the 
centroids of each cluster are graphed. Figure 5 shows also a labeling -1, which is assigned to outliers. 

Secondly, the K-means method is tested. For K-means, the number of clusters is an input parameter 
and therefore, it is fixed to 3 since we provide initially three differentiated clusters. As expected, the right 
three clusters are found at time=0.0. Because K-means has the number of clusters to find as an input 
parameter, it continues to find the original clusters, throughout the model, with some mixing when the 
clusters collide as shown in Figure 7. The colliding of the clusters can be seen in the centroid graph in 
Figure 8. 
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This example is built with the purpose to illustrate the behavior of the clustering algorithms in a 
difficult situation where the time evolution brings clusters to collide creating an unclear situation with 
respect the separation of the clusters. This effect needs a high degree of attention from the user that can 
mitigate the effect controlling the cluster memory model and parameter. 

 
Figure 5. Density-based spatial clustering of applications with noise clusters. 

 
Figure 6. Density-based spatial clustering of applications with noise centroids. 
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Figure 7. K-means clusters. 

 
Figure 8. K-means centroids. 
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4.2 Midway Shift Example 
This example shows the output of the simulation shifts halfway as a function of time. This example 

has been chosen to show a sharp change in the relation analysis as it could happen in a physical model if 
the dominant physical phenomena would change during a transient analysis. The equation representing 
the model is implemented in RAVEN as “external model” (directly interfaced with RAVEN) where the 
basic form is: 

𝑧![𝑡] = 𝑎 𝑡 𝑥 

𝑧! 𝑡 =  𝑏 𝑡, 𝑥 𝑦 

𝑧! 𝑡 =  𝑐 𝑡, 𝑥 𝑥 + 𝑦  

The values of the parameters 𝑎 𝑡 , 𝑏 𝑡, 𝑥 , 𝑐 𝑡, 𝑥  are: 

𝑎 =  0.5 −
arctan 𝑡 − 20

𝜋
+ 5 0.5 +

arctan 𝑡 − 20
𝜋

 

𝑏 =  𝐻 𝑥 + 3 0.5 −
arctan 𝑡 − 20

𝜋
+ 2𝐻 𝑥 + 4 0.5 +

arctan 𝑡 − 20
𝜋

 

𝑐 = 1.5𝐻 𝑥 + 0.5  0.5 −
arctan 𝑡 − 𝑠

𝜋
+ −1.5𝐻 𝑥 − 0.5 0.5 +

arctan 𝑡 − 𝑠
𝜋

 

In addition to the halfway shift, this example presents a clear separation in two clusters with respect 
to x (at least at the beginning) due to the usage of the Heaviside function 𝐻 𝑥 . The variable x is normally 
distributed centered at 0.0 with sigma 1.0 and the y variable is normally distributed centered at 0.0 with 
sigma 2.0.  

A set of representative cases (x is either -1 or 1, and y is either -1 or 1) is shown in Figure 9. For z1, 
since it is only dependent on x, and t, there are two lines, one for x = -1 and one for x = 1.0. For z2, x 
chooses the b value, and y can be -1 or 1, so there are four combinations so four lines. For z3, there are 
only three lines since the couples 𝑥 = 1, 𝑦 = −1  and 𝑥 = −1, 𝑦 = 1  lead to the same value of 
𝑥 + 𝑦 . 

The covariance were calculated with respect to time and are reported in Figure 10 to show the impact 
of the shift at t=20 in the overall system response. 

K-means with two groups was used to cluster the data. Figure 11 shows the centroids found, and 
Figure 12 shows the clusters found in the 𝑧! and 𝑧! space. 

To be more precise, the clustering was performed with respect to the variables 𝑧!, 𝑧!, and 𝑧!. 
Figure 11 shows the time evolution of the centroids projected separately in each dimension (𝑧!, 𝑧!, 
and 𝑧!). The use of the Heaviside function generated a clear cluster separation that was easily captured by 
the K-means. 

In order to highlight how the system has a sharp shift in its behavior at t=20.0, DBSCAN was also 
tested. DBSCAN has the capability to independently decide the number of clusters needed. Figure 13 
shows the centroids found, clearly illustrating that DBSCAN identifies the change in the behavior of the 
systems and introduces a second cluster. Figure 14 shows the time histories time evolution colored with 
respect to their cluster label and projected in the 𝑧! and 𝑧! space (𝑧! has been suppressed). Note that 
DBSCAN does not always classify all the points and outliers are labeled with -1. 
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This example first illustrated how the relational analysis is helpful to identify changes in the system 
behavior, more specifically how it could be used to identify regions of a transient where the relevance of 
physical phenomena changes. This is in fact what the relational analysis reveals. We could in fact think 
that the system could be approximated by two different linear representation before and after t=20.0 
corresponding to two different dominant physical phenomena. The relational analysis reveals when this 
transition take places and provides suggestion concerning which new phenomena is becoming relevant by 
highlighting a shift in the relevance of the input parameters toward the determination of the values of the 
system figure of merits. 

The clustering exercise also provided insight on the behavior of the system. Especially the DBSCAN, 
which was able to detect a bifurcation in the system behavior adding a specific cluster. 

 

 
Figure 9. Representative midway shift examples. 
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Figure 10. Covariance over time. 

 
Figure 11. Centroids found with K-means. 
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Figure 12. Clusters found with K-means. 

 
Figure 13. Centroids found with density-based spatial clustering of applications with noise (DBSCAN). 
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Figure 14. Clusters found with density-based spatial clustering of applications with noise. 

4.3  Dimensionality Reduction 
The dimensionality reduction portion of the TDM allows understanding of the presence of 

redundancy in the analyzed dataset. Especially in statistical analysis, it is important to remove information 
that is redundant with respect to explaining why the data are dispersed .A simple test of this uses the 
following model: 

𝑥! 𝑡 =  𝑥 

𝑥! 𝑡 =  𝑥 + 𝑦 𝑡 

𝑥~𝑈 0,100  

𝑦~𝑈 0,100  

In this model, there are two random variables, x and y. These random variables are independent and 
uniformly distributed between 0.0 and 100.0 (but the results would be similar with other distributions so 
long as the distributions are identical and independent). PCA dimensionality reduction was run for the 
two output variables 𝑥! and 𝑥!. 

As we can imagine in a 𝑥!, 𝑥! two-dimensional plot, at t=0, all the points will be distributed exactly 
along the line 𝑥! = 𝑥!, and therefore all the variance could be explained only by one principal 
component. With the time passing, the influence of the term “ + 𝑦 𝑡” grows and two components will be 
needed to explain the variance of the dataset. 

As it can be seen from Figure 15, the explained variance by the first component is 100% at t=0 by the 
time passing the variables a 𝑥!, and 𝑥! become less and less correlated. At the lim!→! 𝑥 + 𝑦 𝑡 = 𝑦 𝑡 and 
therefore, 𝑥!, and 𝑥! are completely uncorrelated. In this situation, two principal components will be 
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needed and each would explain only 50% of the variance. All this is well captured in the plot in 
Figure 15. 

The vector components are constant as seen in Figure 16. Initially, the vector (√2/2,√2/2) explains 
100% of the variance before the influence of the "+y t" term starts. As time increases, the second 
component vector (√2/2,-√2/2) is needed for the "+y t" term. 

Results shown here were obtained using the ExactPCA option in RAVEN to determine the 
components and then measure the explained variance ratio. 

 
Figure 15. Explained variance ratio time evolution. 

 

Figure 16. Vector components. 
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5. EXAMPLES OF USING TIME-DEPENDENT DATA MINING 
WITH BISON 

For the TDM, a RAVEN input was created to use BISON and RAVEN and TDM. BISON [15,16] 
simulated a fuel element in a reactor with a power history as shown in Figure 17 and with a power spike 
highlighted in Figure 18. The BISON mesh used in the simulation is shown in Figure 19. The details of 
the experimental set up are provided in [17]. BISON was run 7000 times by RAVEN while varying 12 
different parameters using uniform distributions and a Monte Carlo sampling strategy (Table 1) and 12 
output parameters were monitored (Table 2). RAVEN ran 128 BISON simulations simultaneously with 
each using 16 MPI processes (total of 2048 cores simultaneously used). 

The analysis reported below is only exemplificative of RAVEN new capabilities, a deeper 
interpretation of the data would be suggested as a follow-up of this activity to highlight better the 
relationship between the behaviors identified by the analysis reported here and the physics determining 
the detected behavior of the system. Defining better distributions and parameter ranges would be needed 
to make this case fully realistic, but at the same time, it is enough to show case an application of RAVEN 
TDM capabilities 

Four sections follow, the first two, dispersion analysis, and relational analysis, are needed to verify 
the findings of the latter, which are clustering, and dimensionality reduction. 

Table 1. Sampled input parameters and sampling bounds. 
Code 

Variable Name Meaning Unit 
Lower 
Bound 

Upper 
Bound 

Fuel_thE Fuel thermal expansion 1/K 8.5e-6 1.15e-5 
Clad_thE Cladding thermal expansion 1/K 3.5e-6 6.5e-6 
Clad_thC Cladding thermal conductivity W/(m K) 14.4 17.6 
Fuel_thC Fuel thermal conductivity scaling factor dimensionless 0.9 1.1 
Grain_diffCoeff Inter-granular diffusion coefficient dimensionless 0.1 10.0 
Power Power scaling factor dimensionless 0.95 1.05 
Fuel_reloc Fuel relocation scaling factor dimensionless 0.8 1.2 
Grain_radius Grain radius scale factor dimensionless 0.4 1.6 
Clad_ox Oxide scale thickness scaling factor dimensionless 0.6 1.4 
Clad_creeprate Creep rate scaling factor dimensionless 0.7 1.3 
Gas_thC Gas thermal conductivity scaling factor dimensionless 0.9 1.1 
Grain_res_param Inter-granular resolution scale factor dimensionless 0.1 10.0 
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Table 2. Output monitored parameters. 
Code Variable Name Meaning Unit 

midplane_hoop_stress Midplane hoop stress on cladding Pa 
max_hoop_stress Maximum hoop stress on cladding Pa 
max_vonmises_stress Maximum von Mises stress on cladding Pa 
midplane_vonmises_stress Midplane von Mises stress on cladding Pa 
max_clad_temp Maximum temperature in the cladding K 
fis_gas_released Released fission gas moles 
max_fuel_temp Maximum fuel temperature K 
midplane_contact_pressure Midplane contact pressure Pa 
avg_gap_conductance Average gap conductance W/(m K) 
gas_volume Interior gas volume m3 
ave_temp_interior Average interior temperature K 
average_burnup Average pellet burnup MWd/kgU 

 

 
Figure 17. BISON power history used in the simulation. 
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Figure 18. BISON simulation power spike. 

 
Figure 19. BISON mesh used in the simulation: smeared pellet stack with hafnium insulator end pellets. 
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5.1 System Response Dispersion Analysis 
In the following sections, the dispersion of the BISON runs is analyzed. The example chosen 

parameter is the maximum hoop stress (Figure 20 and Figure 21). The maximum hoop stress has been 
analyzed using both time and burnup as a pivot variable. It is interesting to note how the use of burnup as 
a pivot variable (any of the monotonically increasing output variables can be used as pivot variable in 
RAVEN instead of the time), it compresses not relevant part of the experiment and expand the plots in 
correspondence of the region of interesting transient in the fuel behavior. The plots are, in fact, more 
readable when the system evolution is plot versus the burnup. The plots present the mean, the median 
(average value of the minimum and maximum value detected), 5% percentile (lower value encompassing 
only 5% of the possible outcomes), and 95% percentile (higher value encompassing 95% of the possible 
outcomes). 

The reason to report here these post processed values of the some of the output figure of merits is to 
match some of the finding from those analyses with the finding from the advanced data mining. For 
example one important point, clearly, is around ~3.3 1.e7 sec or 1.75 MWd/kgU, were hoop stress initiate 
the inversion of sign (from negative to positive). As we will see later on, this point coincide with a change 
in the behavior of the system detected both from clustering and dimensionality reduction. The change in 
the system behavior is most likely due to the beginning of the clad pellet interaction. 

An example of an interesting effect that could need further investigation is in correspondence of a 
burnup of ~0.02 MWd/kgU. It clearly looks like there is a mechanism of release of the hoop stress that is 
not present in the whole spectrum of the sampled input parameters. This is highlighted by the fact that the 
95% percentile curve is steadily growing while the 5% percentile has a sharp drop. The opposite situation 
appears at around a burnup of 0.027. It seems, therefore, that there is a set of input parameters that are 
capable to delay the release of the stress. 

 
Figure 20. Maximum hoop stress with respect to time. 
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Figure 21. Maximum hoop stress with respect to burnup. 

5.2 Relational Analysis 
For the relational analysis we present first the time evolution of the covariance of the fission gas 

release during the transient except the final ramp (Figure 22) and then the final ramp analysis in a separate 
plot: Figure 23. Also the correlations for the first part of the transient and for the final spike for the 
maximum hoop stress are shown respectively in Figure 24 and Figure 25. 

The covariance analysis is used to determine which components are most influential toward the 
dispersion of the code output. RAVEN can compute the covariance (and also the correlation) for a set of 
variables, which can be a mixture of input output, only output, or only input. Depending on the set of 
variables addressed by the analysis, the covariance and correlation can be used, therefore, as supervised or 
unsupervised learning algorithm. Since the unsupervised learning approach, in the output space, would 
lead to result comparable with the ones that will be obtained by the PCA, here we show the supervised 
approach where the relationship between input and output is studied. 

In a time dependent relational analysis for data mining the most relevant part is not the values of the 
contribution to the dispersion but rather changes and trends. As we can see, the grain diffusion coefficient 
is the largest positive contributor; among the other positive contributors we have the inter-granular 
resolution scale factor, and power. The transition spots identified by the dispersion analysis due to the 
clad fuel contact appear clearly at around ~3.3 1.e7 sec in the maximum hoop stress plots. The larges 
negative contributor is the grain radius followed by the thermal conductivity of the clad and fuel. Clearly 
we would expect this trend to be confirmed by the advanced data mining algorithms, in particular by the 
cluster separation analysis. 
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In fact, a type of analysis, which is important in terms of deciding the visualization projection of the 
clustering approach, is the correlation analysis. The correlation, in practical terms, is a sensitivity analysis 
and therefore we should be using this analysis to guide the visualization by deciding which ones are the 
most important variables when trying to visualized the dispersion of the clusters in the input space.  

 
Figure 22. Covariance evolution for the fission gas release excluding final ramp. 
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Figure 23. Covariance evolution for the fission gas release in the final ramp. 

 

Figure 24. Correlation (Pearson moments) evolution for the fission gas release excluding final ramp. 
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Figure 25. Correlation (Pearson moments) evolution for the fission gas release in the final ramp. 

5.3 Clustering 
The next set of examples is focused on the illustration of the clustering capability. Colors in the plots 

are coherent in the whole section with respect to the clustering labels. The results shown in the following 
sections are the outcome of the application of K-means based clustering. Three clusters were requested 
from the algorithm. The clustering was performed with respect to all the output variables. The clustering 
has been applied using both time and burnup as pivot variables. For brevity, we just show the plots of the 
centroid trajectory with respect to the mid-plane von Mises stress on cladding and the average interior 
temperature. 

Clearly the average interior temperature shows a little degree of separation between the clusters even 
in the final power ramp. This could be appreciated in Figure 26 and Figure 27. This means that the 
average interior temperature has a very low dispersion not being a good discriminant for the 
determination of the clusters. In other words, the average interior temperature is not strongly impacted by 
the variation of the input parameters considered within their ranges of variations. 

As it could be inferred from Figure 28, the mid-plane von Mises stress is a much stronger 
discriminant for the clustering algorithm, indicating a large sensitivity of this figure of merits with respect 
to the variable sampled and the ranges chosen. At the same time von Mises stress seems to lose its value 
as cluster discriminant when the contact (as indicated by the initial dispersion analysis) between the fuel 
at the cladding happens (~3e7 sec). Figure 29 shows a very complex trajectory of the centroids during the 
final power ramp. The sudden drop of the stress for the blue centroid most likely is simply due to the fact 
that this cluster seems to have a slower response time to the power ramp and therefore there is enough 
time spent at low stress level to capture it. The other clusters simply spent too little time at low stress that 
the time resolution has not captured it (RAVEN can perform a sub sampling of the time step). This could 
be confirmed looking at the cluster trajectories with respect the Figure 30 and Figure 31 that show clearly 
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a cluster with a large delay in time to respond to the power ramp. These are currently a qualitative 
consideration that would need more investigations, especially to exclude the presence of outliers that 
might mislead the clustering algorithm. 

There are four more plots following; these plots are made seeking to identify the discriminant 
variables with respect the generation of the cluster locations. We have to recall that, in the time dependent 
approach implemented, the set of the realization in the input space which belongs to a cluster, they change 
over time since the clustering is done at each time step (possibly accounting for some inertia like terms). 

Figure 32 shows the input space realization colored depending the cluster belonging at t=5e7. As it 
could be inferred, from Figure 28 This is a time region where the clusters (at least with respect the von 
Mises stress) are quite separate. Consequently, in this time region, when choosing a good set of projection 
parameters, the cluster shows a good degree of separation. Of the three parameters chosen (power, fuel 
conductivity, and grain radius) the power and the fuel conductivity are the dominant label discriminant. 
This is in reasonable agreement with the relational analysis performed (on a closely correlated variable, 
which is the max hoop stress). The proper procedure would have been to perform a covariance analysis 
(using the supervised learning approach) for all the outputs (which are the clustering space) with respect 
the input space and use the most significant direction for the 3D projection. This analysis is just 
demonstrative of the newly developed capabilities. 

Figure 33, instead is built with the opposite goal. A bad choice in the 3D projection variables, it 
makes the clustering in the input space not readable anymore. It is interesting to observe that the creep 
rate in spite of a big ranking obtained in the relational analysis does not seems to be an explanatory value 
for clustering. Once more, this is, most likely, due to the incompleteness of our relational analysis as a 
guide for choosing the projection space (all sensitivity analysis for all variables should have been done). 

Figure 34 and Figure 35 focuses instead in the region of the final ramp. While the behavior of the 
input space variables with respect the capability of being discriminant of the clustering classification is 
the same as before, the third cluster is almost non-present. Figure 34 shows a very limited number of red 
realizations. This seems to indicate that the cluster is most likely the results of numerical artifacts and the 
point that they belong to the cluster outliers. This statement, to be confirmed, would require to manually 
identifying those runs to verify possible anomalies. Clear this work is outside of the scope of this report 
but still shows the power of the data mining approach. 

Figure 37 Figure 38 and Figure 38 illustrate a different way to locate the originating combination of 
the input parameters for each cluster (the time of the clustering time snapshot chosen for this analysis is 
t=5e7s). The capability of an input parameter to be important with respect to the classification of a point 
with respect the cluster generated is summarized in the following Table 3. The importance with respect to 
the classification in the different clustering is derived by the distortion from a uniform distribution of the 
histograms. This would be more complex if the sampling distributions were not uniform, since this would 
have biased the density distribution of the sampling and therefore affecting the histograms. In this case 
the distortion from the expected histogram should have been considered. 

It is valuable to reiterate that this importance ranking is only for the specific condition of the fuel at 
t=5e7s and plus it represent the relevance with respect to the clustering labeling. To understand how the 
importance with respect to the labeling transfers to the importance with respect to the behavior of the fuel, 
we need to look to the projection of the centroids in the different dimensions of the output space and see 
in which dimensions the distance between the centroid is maximum. Those output dimensions are 
therefore the most impacted by the input parameters that are the stronger discriminating factors for the 
cluster labeling. 

For example this type of analysis indicates that the high importance variables in the table below are 
highly impactful with respect to the middle plane Von Mises stress and not with respect to the average 
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interior temperature at t=5e7s. This can be seen by looking at the centroid separation in Figure 28 and 
Figure 26. 

 

Table 3. Sampled input parameters importance with respect cluster separation at t=5e7s. 
Code 

Variable Name Meaning Unit Importance 
Fuel_thE Fuel thermal expansion 1/K Low 
Clad_thE Cladding thermal expansion 1/K Low 
Clad_thC Cladding thermal conductivity W/(m K) Medium 
Fuel_thC Fuel thermal conductivity scaling factor dimensionless High 
Grain_diffCoeff Inter-granular diffusion coefficient dimensionless Medium 
Power Power scaling factor dimensionless High 
Fuel_reloc Fuel relocation scaling factor dimensionless Low 
Grain_radius Grain radius scale factor dimensionless Medium 
Clad_ox Oxide scale thickness scaling factor dimensionless Low 
Clad_creeprate Creep rate scaling factor dimensionless Low 
Gas_thC Gas thermal conductivity scaling factor dimensionless Low 
Grain_res_param Inter-granular resolution scale factor dimensionless Low 
 

 
Figure 26. Cluster centroids trajectory over time as a function of the average interior temperature. 
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Figure 27. Cluster centroids trajectory over time as a function of the average interior temperature (detail 
of the final ramp). 

 
Figure 28. Cluster centroids trajectory over time as a function of the middle plane von Mises stress. 
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Figure 29. Cluster centroids trajectory over time as a function of the middle plane von Mises stress (detail 
of the final ramp). 

 
Figure 30. Cluster centroids trajectory over burnup as a function of the middle plane von Mises stress. 
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Figure 31. Cluster centroids trajectory over burnup as a function of the middle plane von Mises stress 
(final ramp detail). 

 

Figure 32. Input space realization colored depending their cluster belonging at t=5e7s. 
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Figure 33. Input space realization colored depending their cluster belonging at t=5e7s. 

 

\ 

Figure 34. . Input space realization colored depending their cluster belonging at t=7.662e7s. 
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Figure 35. Input space realization colored depending their cluster belonging at t=7.662e7s. 

 

Figure 36. Histogram of the originating points in the input space of the three clusters for four input 
variables (t=5e7s). 
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Figure 37. Histogram of the originating points in the input space of the three clusters for six input 
variables (t=5e7s). 
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Figure 38. Histogram of the originating points in the input space of the three clusters for four input 
variables (t=5e7s). 

5.4 Dimensionality Reduction 
The results of the dimensionality reduction show different behavior along the power history. The 

amount of the explained variance varies over the course of time as seen in Figure 39 through Figure 42. It 
is important to notice how only few components (~3) are capable to explain most of the variance, 
indicating a high degree of correlation among the considered outputs. For example, the plots of the first 
component before the final ramp (Figure 43) indicate that the outputs gas volume and midplane hoop 
stress are strongly positively correlated, while max fuel temperature and fission gas released are both 
negatively correlated. It is also relevant to notice that the average gap conductance switches from being 
negatively correlated to positively correlated in correspondence of the contact of the pellet with the clad. 
Opposite behavior is shown by max hoop stress and interior temperature. In Figure 45 (final power ramp) 
the inversion of the correlation is not anymore presented since contact has already taken place. 

The macroscopic changes in the physical behavior of the system (identified first in the dispersion 
analysis and confirmed by the relational analysis) not only are detected by the trend analysis of the 
components of the principal components, but also by changes of the ratio of explained variance along the 
transient. 

Figure 44, and Figure 46 perform the same type of analysis for the third component. The third 
component accounts for phenomena that are less macroscopic and of lesser impact in determining the 
overall response of the system. The amplitude of the components is smaller, the fluctuations are much 
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more frequents, most likely they overlap with the small ramp that characterize the microstructure of the 
power history. An overlap plot with the mean values and the power history could be used to investigate 
this possibility. 

 This type of information might be used in designing an experiment when deciding which quantities 
should be monitored. Redundant quantities could be trimmed saving money in the experimental sensors. 
Moreover, when the explained variance changes sensibly, it indicates a change in the representative 
physics dominating the problem. This, therefore, provides information concerning where a sensitivity 
analysis could be used to identify changes in the relevant inputs following the importance of the different 
physical phenomena. 

At this point there is no claim on the quantitative accuracy of the prediction made with the data 
mining tools, which generally speaking are qualitative in nature. It would be necessarily to use more time 
and a cross cutting team, including a fuel performance analyst and an expert of the methodologies so far 
illustrated to investigate and explain any possible agreement/discrepancies with respect to the expected 
physical interpretation of the experiment. 

 

 
Figure 39. Explained variance ratio for each component with respect to time. 
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Figure 40. Explained variance ratio for each component with respect to time (final power ramp detail). 

 
Figure 41. Explained variance ratio for each component with respect to burnup. 
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Figure 42. Explained variance ratio of each component with respect to burnup (final power ramp detail). 

 

Figure 43. First principal components during the transient excluding the final ramp. 
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Figure 44. Third principal components during the transient excluding the final ramp. 

 

Figure 45. First principal components during the transient during final power ramp detail. 
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Figure 46. Third principal components during the transient during final power ramp detail. 

 

6. CONCLUSION 
TDM has been added to RAVEN. The implementation has created a general infrastructure that allows 

data mining analysis to be extended over time. A recall of the theory of the most used of those 
post-processing capabilities, with particular emphasis on clustering and dimensionality reduction, has 
been provided in Section 2. The static post-processing capabilities have been extended to the time-
dependent domain by means of the theory presented in Section 3. The implementation of the TDM 
capabilities have been tested and illustrated in three examples presented in Section 4. Finally, Section 5 
presents the application of the TDM to a realistic case based on use of the BISON code for the simulation 
of an experiment. 

As presented in Appendixes A and B, the relative entries in the RAVEN User Manual have been 
updated to reflect the new capabilities and 20 new regression tests have been created. 

The new features implemented show capabilities for better understanding the physics underlying the 
overall response of modeled systems, which could have implication in helping engineers to better design 
new systems, experiments. 

The clustering could be used to highlight which dimension presents the highest dispersion and how 
the different physics of the systems alternate in determining the response of the system. 

The dimensionality reduction could be used to identify redundant output signals, correlation among 
output variables, and the real dimensionality of the problem. Once more, the changes in the load and 
explained variance of the outputs over time signal changes in the system behavior that could provide 
important clues on the physical mechanisms dominant the system response. 
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At this point any conclusion drawn on the BISON simulation is clearly demonstrative and a close 
cooperation with some fuel experts, probably will be necessary for a correct interpretation of all data and 
analysis generated. 
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Appendix A 
 

RAVEN User Manual Updates 
 These are sections that have been updated or created as a result of RAVEN data mining activities (in 
bold the specific addition. The part specifically referring to the time dependent newly introduced part is 
underlined. 

17.5.1 BasicStatistics  

 The BasicStatistics post-processor is the container of the algorithms to compute many important 
statistical quantities. It is important to note that this post-processor can accept as input either a PointSet or 
a HistorySet data object, depending on the type of statistics a user wants to compute: 

• PointSet: Static Statistics;   

• HistorySet: Dynamic Statistics. Depending on a “pivot parameter” (e.g. time) the post- 
processor is going to compute the statistics for each value of it (e.g. for each time step). In 
case an HistorySet is provided as Input, the Histories needs to be synchronized (use 
Interfaced post-processor of type HistorySetSync).   

In order to use the BasicStatistics post-processor, the user needs to set the subType of a 
<PostProcessor> node: 

<PostProcessor subType = ’BasicStatistics’ /> 

Several sub-nodes are available:  

 • <what>, comma separated string, required field, List of quantities to be computed. Currently the 
quantities available are: 

– covariance: covariance matrix 

– NormalizedSensitivity: matrix of normalized sensitivity coefficients. Note: It is the  matrix of 
normalized VarianceDependentSensitivity 

– VarianceDependentSensitivity: matrix of sensitivity coefficients dependent on the variance of 
the variables   

– sensitivity: matrix of sensitivity coefficients, computed via linear regression method.   

– pearson: matrix of correlation coefficients 

– expectedValue: expected value or mean 

– sigma: standard deviation 

– variationCoefficient: coefficient of variation, i.e. sigma/expectedValue. Note: If the 
expectedValue is zero, the variationCoefficient will be INF.   

– variance: variance 

– skewness: skewness 

– kurtosis: excess kurtosis (also known as Fisher’s kurtosis)   

– median: median 
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– percentile: the percentile. If this quantity is inputted as percentile the 5% and 95% percentile(s) 
are going to be computed. Otherwise the user can specify this quantity as percentile X%, where 
X represents the requested percentile (an integer value between 1 and 100)   

– samples: the number of samples in the data set used to determine the statistics.   

– minimum: The minimum value of the samples.   

– maximum: The maximum value of the samples.   

Note: If the weights are present in the system then weighted quantities are calculated automatically. 
In addition, if a matrix quantity is requested (e.g. Covariance matrix, etc.), only the weights in the 
output space are going to be used for both input and output space (the computation of the joint 
probability between input and output spaces is not implemented yet). 

Note: Certain ROMs provide their own statistical information (e.g., those using the sparse grid 
collocation sampler such as: ’GaussPolynomialRom’ and ’HDMRRom’), which can be obtained 
by printing the ROM to file (xml). For these ROMs, computing the basic statistics on data generated 
from one of these sampler/ROM combinations may not provide the information that the user expects. 
  

If all the quantities need to be computed, the user can input in the body of <what> to the string all. 
  

• <biased>, string (boolean), optional field, if True biased quantities are going to be 
calculated, if False unbiased. 
Default: False 

• <parameters>, comma separated string, required field, lists the parameters on which the 
previous operations need to be applied (e.g., massFlow, Temperature) 

• <methodsToRun>, comma separated string, optional field, specifies the method names of 
an external Function that need to be run before computing any of the predefined quantities. If 
this XML node is specified, the <Function>, node must be present. 
Default: None 

• Assembler Objects This object is required in case the <methodsToRun> node is specified. 
The object must be listed with a rigorous syntax that, except for the xml node tag, is common 
among all the objects. Each of these nodes must contain 2 attributes that are used to map 
those within the simulation framework:  

– class, required string attribute, it is the main “class” the listed object is from 

– type, required string attribute, it is the object identifier or sub-type  

The BasicStatistics post-processor approach optionally accepts the following object type: 

– <Function>, string, required field, The body of this xml block needs to contain the name 
of an External Function defined within the <Functions> main block (see section 18). This 
object needs to contain the methods listed in the node <methodsToRun>. 

– <pivotParameter>, string, optional field, name of the parameter that needs to be used 
for the computation of the Dynamic BasicStatistics (e.g. time). This node needs to be inputted 
just in case a HistorySet is used as the input. It represents the reference monotonic variable 
based on which the statistics is going to be computed (e.g. time-dependent statistical 
moments).  

– Default: None  
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Example (Static Statistics):  

<Simulation> 
... 
<Models>  
... 
<PostProcessor name='aUserDefinedName' subType='BasicStatistics' 

verbosity='debug'> 
<!-- Here you can specify what type of figure of merit you need to 

compute: expectedValue, sigma, variance, kurtosis, pearson, 
covariance, etc. -->  

<what>expectedValue</what> 
<parameters>x01,x02</parameters> 
<methodsToRun>failureProbability</methodsToRun>  

</PostProcessor> 
...  

</Models>  
...  

</Simulation> 

Example (Dynamic Statistics):  

<Simulation> 
... 
<Models>  
... 
<PostProcessor name='aUserDefinedNameForDynamicPP' 

subType='BasicStatistics' verbosity='debug'> 
<!-- Here you can specify what type of figure of merit you need to 

compute: expectedValue, sigma, variance, kurtosis, pearson, 
covariance, etc. --> 

<what>expectedValue,covariance,variance</what> 
<parameters>x01,x02</parameters> 

<methodsToRun>failureProbability</methodsToRun> 
<pivotParameter>time</pivotParameter> 
</PostProcessor> 
...  

</Models>  
...  

</Simulation> 

17.5.9.1 SciKitLearn  

’SciKitLearn’ is based on algorithms in the SciKit-Learn library, and it performs data mining 
over PointSet and HistorySet objects. Note that for HistorySet objects ’SciKitLearn’ performs the 
task given in <SKLType> (see below) for each time step, and so only synchronized HistorySet objects 
can be used as input to this model. For an unsynchronized HistorySet, use the ’HistorySetSync’ 
method in the ’Interfaced’ post-processor to synchronize the input data before using a 
’SciKitLearn’ post-processor. The rest of this subsection and the following subsection are 
dedicated to the ’SciKitLearn’ library.  

The temporal variable for a HistorySet ’SciKitLearn’ is specified in the 
<pivotParameter> node:  
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• <pivotParameter>, string, optional parameter, specifies the pivot variable (e.g., time, 
etc) in the input HistorySet.  

Default: None.  

The algorithm for the dataMining is chosen by the subnode <SKLType> under the parent node 
<KDD>. The format is same as in 17.3.6. However, for the completeness sake, it is repeated here.  

The data that are used in the training of the DataMining postprocessor are supplied with the subnode 
<Features> in the parent node <KDD>.  

• <SKLType>, vertical bar (|) separated string, required field, contains a string that 
represents the data mining algorithm to be used. As mentioned, its format is: 
<SKLType>mainSKLclass|algorithm</SKLType> where the first word (before the 
“|” symbol) represents the main class of algorithms, and the second word (after the “|” 
symbol) represents the specific algorithm. 

• <Features>, string,requiredfield, defines the data to be used for training the data mining 
algorithm. It can be: 

– The name of the variable in the defined dataObject entity 

– The location (i.e. input or output). In this case the data mining is applied to all the 
 variables in the defined space. 

The <KDD> node can have either optional or required subnodes depending on the dataMining 
algorithm used. The possible subnodes will be described separately for each algorithm below. The time 
dependent clustering data mining algorithms have a <reOrderStep> option that will try and keep the 
same labels on the clusters. A higher number implies a longer history that the clustering algorithm will 
look through to maintain the same labeling between time steps.  All the available algorithms are described 
in the following sections.   

17.5.10.3 Method: HistorySetSync  

This Post-Processor performs the conversion from a HistorySet object to another HistorySet object. 
The conversion is made so that all histories are synchronized in time (or some other user-defined pivot 
parameter). It can be used to allow the histories to be sampled at the same time instant.   

There are two possible synchronization methods, specified through the <syncMethod> node. If the 
<syncMethod> is ’grid’, a <numberOfSamples> node is specified, which yields an equally 
spaced grid of time points. The output values for these points will be linearly derived using nearest 
sampled time points, and the new HistorySet object will contain only the new grid points.  

The other methods are used by specifying <syncMethod> as ’all’, ’min’, or ’max’. For 
’all’, the postprocessor will iterate through the existing histories, collect all the time points used in any 
of them, and use these as the new grid on which to establish histories, retaining all the exact original 
values and interpolating linearly where necessary. In the event of ’min’ or ’max’, the postprocessor 
will find the smallest or largest time history, respectively, and use those time values as nodes to 
interpolate between.  In the <PostProcessor> input block, the following XML sub-nodes are 
required, independent of the subType specified:   

• <timeID>, string, required field, ID of the temporal variable 

• <extension>, string, required field, type of extension when the sync process goes outside 
the boundaries of the history (zeroed or extended) 



 

 51 

<syncMethod>, string, required field, synchronization strategy to employ (see description above). 
Options are ’grid’, ’all’, ’min’, ’max’. 

<numberOfsamples>, integer, optional field, required if <syncMethod>  is ’grid’, number 
of new time samples.   
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Appendix B 
 

Regression Test Additions 
Basic Statistics Regression Test Additions 

1. PostProcessors/BasicStatistics.testTimeDependentBasicStatistics 

2. PostProcessors/BasicStatistics.testTimeDependentBasicStatisticsAsynchronousHistories 

Clustering Regression Test Additions 
1. PostProcessors/TemporalDataMiningPostProcessor/Clustering.AffinityPropogation 

2. PostProcessors/TemporalDataMiningPostProcessor/Clustering.DBSCAN 

3. PostProcessors/TemporalDataMiningPostProcessor/Clustering.DirichletProcessGMM 

4. PostProcessors/TemporalDataMiningPostProcessor/Clustering.GaussianMixture 

5. PostProcessors/TemporalDataMiningPostProcessor/Clustering.KMeans 

6. PostProcessors/TemporalDataMiningPostProcessor/Clustering.MeanShift 

7. PostProcessors/TemporalDataMiningPostProcessor/Clustering.MiniBatchKMeans 

8. PostProcessors/TemporalDataMiningPostProcessor/Clustering.SpectralClustering 

9. PostProcessors/TemporalDataMiningPostProcessor/Clustering.VariationalGMM 

Dimensionality Reduction Regression Test Additions 
1. PostProcessors/TemporalDataMiningPostProcessor/DimensionalityReduction.ExactPCA 

2. PostProcessors/TemporalDataMiningPostProcessor/DimensionalityReduction.FastICA 

3. PostProcessors/TemporalDataMiningPostProcessor/DimensionalityReduction.KernelPCA 

4. PostProcessors/TemporalDataMiningPostProcessor/DimensionalityReduction.LocallyLinearEmbeddi
ng 

5. PostProcessors/TemporalDataMiningPostProcessor/DimensionalityReduction.MiniBatchSparsePCA 

6. PostProcessors/TemporalDataMiningPostProcessor/DimensionalityReduction.MultiDimensionalScali
ng 

7. PostProcessors/TemporalDataMiningPostProcessor/DimensionalityReduction.RandomizedPCA 

8. PostProcessors/TemporalDataMiningPostProcessor/DimensionalityReduction.SparsePCA 

9. PostProcessors/TemporalDataMiningPostProcessor/DimensionalityReduction.TruncatedSVD 


