
 

 

INL/EXT-16-37243 
 

Light Water Reactor Sustainability Program 

System Reliability Analysis Capability and 
Surrogate Model Application in RAVEN 

 

Cristian Rabiti, Andrea Alfonsi, Dongli Huang, Frederick Gleicher, 
Bei Wang, Hany S. Abdel-Khalik, Valerio Pascucci, 

and Curtis L. Smith 

November 2015 

DOE Office of Nuclear Energy 
 



 

 

 

 
 

DISCLAIMER 
This information was prepared as an account of work sponsored by an 

agency of the U.S. Government. Neither the U.S. Government nor any 
agency thereof, nor any of their employees, makes any warranty, expressed 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness, of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately 
owned rights. References herein to any specific commercial product, 
process, or service by trade name, trade mark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the U.S. Government or any agency thereof. The views and 
opinions of authors expressed herein do not necessarily state or reflect 
those of the U.S. Government or any agency thereof. 



 

 

INL/EXT--16-37243 
 

Light Water Reactor Sustainability Program 

System Reliability Analysis Capability and 
Surrogate Model Application in RAVEN 

Principal Investigator: 
Cristian Rabiti (INL) 

 

Topology-Inspired Batch Selection for Acceleration of Adaptive Sampling: 
Bei Wang (University of Utah) 

Valerio Pascucci (University of Utah) 
Cristian Rabiti (INL) 

 

Theoretical Development and Implementation Results of Surrogate Construction 
Algorithms for RAVEN’s Multi-Physics Models: 

Dongli Huang (Purdue University) 
Hany S. Abdel-Khalik (Purdue University) 

Cristian Rabiti (INL) 
 

Multi-Physics Surrogate Coupling: 
Andrea Alfonsi (INL) 
Cristian Rabiti (INL) 

 
Project Overview and Coordination: 

Cristian Rabiti (INL) 
Curtis L. Smith (INL) 

November 2015 
 

Idaho National Laboratory 
Idaho Falls, Idaho 83415 

 
http://www.inl.gov/lwrs 

Prepared for the 
U.S. Department of Energy 
Office of Nuclear Energy 

Under DOE Idaho Operations Office 
Contract DE-AC07-05ID14517 



 

 

 
 



 

v 

EXECUTIVE SUMMARY 
This report describes the effort performed to improve the analysis capabilities of the RAVEN code. 

These efforts include improving the reliability (or “limit”) surface search of the RAVEN code and 
exploring new opportunities in usage of surrogate models by extending the current RAVEN capabilities 
to multi-physics surrogate models construction for high-dimensionality problems. 

The RAVEN code has the capability of identifying reliability surfaces. In the text, we use the idea of 
limit or reliability surfaces Interchangeably. In general, a limit surface is a surface that separates the input 
space from where the system will evolve, either toward success or failure. Depending on how success or 
failure is defined, the limit surface could be a reliability surface. For example, when the success or failure 
corresponds to the availability or functionality of a system, the limit surface coincides with the reliability 
of the system. For a complex system (i.e., a nuclear power plant system), availability can be defined in 
many ways. If we account for the possibility of recovering the system over a certain amount of time, the 
reliability is an integral measure over time. For example, the definition of core damage can be taken as a 
reliability metrics due to the permanent impairment of the asset (i.e., the plant no longer functions due to 
the core damage). 

An example of an input space is the recovery time of the auxiliary cooling system and the operating 
power level of a nuclear power plant. In a station blackout scenario, the combination of these two 
parameters, where we have a transition between core and no core damage, represents the limit/reliability 
surface. As we describe in this report, the RAVEN code is able to represent this surface through advanced 
simulation-based analysis. 

In safety analysis, risk management and system design knowledge of the limit surface location 
provide an important guidance to engineers. 

Unfortunately, determining the location of the reliability surface is a very complex problem that could 
easily become computationally untreatable. This complexity depends on the computational time needed to 
evaluate the goal function (i.e., the performance metric of interest) for a specific set of the input 
parameters (e.g., computing peak clad temperature for one RELAP-7 simulation of a loss-of-coolant-
accident scenario), from the number of parameters in the input space, or from the probability associated 
with the failure region. To overcome these computational challenges, RAVEN has implemented several 
acceleration algorithms such as surrogate model-guided sampling of the input space, adaptive grid, and, 
finally, a sampling strategy from a topological analysis of the scoring function. The description of the last 
acceleration scheme is the first subject of this report. One major challenge in determination of the limit 
surface location is how to choose the sequence of points to be sampled. Current implementation has been 
improved by introducing a scheme where a scoring function is constructed to evaluate the most promising 
point to be explored and then a topological analysis of this function is performed to establish a batch of 
points that should bring the highest informational gain. This implementation has led to a faster and more 
robust reliability/limit surface-searching algorithm. 

The report then focuses on two basic research activities that constitute the foundation of expanding 
the RAVEN capability to construct reduced-order models to a multi-physics problem and 
high-dimensionality problems for reliability analysis. We describe these capabilities, including situations 
where the current RAVEN approach for identification of the reliability surface might be problematic. 

Section 3 of this report deals with the theory of surrogate model construction in cases where the 
complexity (number of degree of freedom used to describe the system) of the problem being analyzed is 
large. In particular, reactor physics (i.e., RattleSNake) and fuel performance (i.e., BISON) are chosen as 
two coupled physics. The developed theory is tested to analyze the possibility of successfully generating 
two separate surrogate models coupled via a very low-dimensionality space and, overall, still being able 
to reproduce the response of the original system. 
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The presented work is complete with respect to theoretical development; it has been successfully 
tested using BISON and RattleSnake. Full implementation of this capability within the RAVEN code has 
just started and will continue. 

This work has importance in reliability analysis and also offers the possibility to deal with problems 
in uncertainty quantification and optimization. 

Following an ensemble approach, an approach in RAVEN has been implemented and tested that 
allows construction of reduced order models of complex systems by assembling the separate reduced 
order models of each single component of the system. While RAVEN already has the capability to 
construct and store surrogate models for a given application, this feature has now been extended, allowing 
for multiple applications to be integrated and, thereby, representing a complex system without the need of 
the original codes to be coupled.  
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System Reliability Analysis Capability and Surrogate 
Model Application in RAVEN 

1. INTRODUCTION 
This report illustrates the details of three major theoretical developments in support of the RAVEN 

project and, in particular, the reliability surface analysis capability. The first development is focused on 
improvement of the research speed of the limit (i.e., reliability) surface location. Previous reports, as for 
example 10,  discuss how the limit surface location reveals crucial information to engineers who perform 
risk management. Speed and the accuracy of the limit surface location are crucial components of RAVEN 
functionality. In this report, a few strategies have explored improvements of the performance of searching 
algorithms to take advantage of parallel machines and to introduce a new approach in selection of the next 
point to be sampled. Theoretical background, new calculation flows, and results for theoretical examples 
are described in the first section of this report. The second and the third developments presented in this 
report are related to and are part of an overall long-term development plan for RAVEN, where reduced 
order models (ROMs) could be used dynamically in analyzing complex multi-physics system reliability. 

Figure 1 represents a system where two physics are coupled to generate the overall representation of 
the global system. Each physic is represented by a separate model and the information is exchanged 
between the two models through high-density fields containing millions of degrees of freedom (DoF). As 
high density field here we identify a scalar or vectorial field described by a large number of 
points/degrees of freedom (up to several billions). 

In the approach followed by RAVEN, the overall system would be examined and, possibly, the 
relationship between the input space and the engineering figure of merits is emulated by ROMs to speed 
up processes such as reliability surface search, optimization, model tuning, and uncertainty propagation. 
This approach is not always feasible or practical. The reason for this is the more the complexity of the 
system grows (i.e., number of internal DoF), the higher the computational time that is required to examine 
the response of the system for a realization of the input space parameters. Generally, the computational 
effort grows more than linearly; therefore, if possible, it would be more effective to create a ROM 
separately for each model rather than the full system and then perform coupling later on. Other cases 
where it could be convenient to use this approach are when the codes implementing the single models are 
not directly coupled. In order to implement such a scheme, several expansions to current RAVEN 
capabilities and theoretical developments are needed. 

 
Figure 1. Example of multi-physics coupling with a high density field exchange. 

One major theoretical challenge to be solved is how to construct ROMs to emulate models producing 
high-density fields with millions, or more, of DoF instead of having to represent the response of the 
system via a few figures of merit. The proposed approach is to exploit the fact that a high number of DoF 
usually hides a high level of correlation among single DoF. This is because every physical system 
presents a natural tendency to diffuse the information; therefore, the true number of DoF is much less than 
the number it is used to represent in the response of the model. To detect the structure of those 
correlations and to detect the minimal set of DoF that allows us to characterize the model response, this 
work proposes an approach based on analysis of the covariance of several high-density fields produced by 
perturbation of the input space. This work proves the feasibility of the approach and will be followed by 
implementation of such capabilities in RAVEN. 

Reactor Physics Fuel Performance 

Temperature Field 

Power Distribution 
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Another situation where reliability analysis would benefit from construction of a complex system 
representing assembly of separate surrogate models is when the coupling between the high-fidelity 
representations of the system components is not available. In this case, later advancements in the RAVEN 
infrastructure that are presented here offer a solution. 

Until now, in RAVEN, it has been possible to create surrogate models of different models with 
several input parameters and output (i.e., figures of merit) and store them for later usage. Now it is 
possible to combine them to create representations of complex systems that were not available before. 

This work currently covers only sequential and non-linear steady-state coupling; however, once the 
time-dependent surrogate models are completed in RAVEN, the work could be extended to 
time-dependent analysis and even high-density, field-based coupling. 

In order to plan the deployment of such theoretical work inside RAVEN, it is necessary to begin 
implementation of the needed software infrastructure. Currently, a new infrastructure has been put in 
place in the RAVEN framework, which allows coupling of several different surrogate models, laying 
down the skeleton for future implementation of multi-physics coupling for high-dimensionality fields. 

2. ADAPTIVE SAMPLING IN RAVEN: 
TOPOLOGY-INSPIRED BATCH SELECTION 

2.1 Introduction 
Nuclear simulations typically contain a large number of uncertain parameters and can be 

computationally expensive. During simulation-based risk analysis and uncertainty quantification, it is 
important to understand the relationship between the input and output of a simulation using as few 
simulations as possible. This is a typical context for adaptive sampling (AS), where active selection of 
training points can significantly reduce computational effort and accelerate the learning process of the 
response surface of a given simulation. 

During such a learning process: 

• Few observations (runs of the high fidelity model) are obtained as the initial training set 

• ROM is constructed (trained using the available observations) to represent the simulation space either 
as a regressor or a classifier 

• Label (output) a set of unlabeled points (points of the input space for which the corresponding output 
is unknown) is predicted using the ROM 

• Unlabeled points are ranked and selected based on some scoring/utility function with respect to the 
value as next training points 

• Evaluation of the selected point is added to the training set 

• ROM is retrained with the updated training set 

• Process is repeated until convergence is achieved (stability of the ROM). 

Therefore, we attempt to gain the most information with a small number of carefully selected sampled 
points, limiting the number of expensive queries from the simulation. In this report, we focus specifically 
on identifying the reliability surface, that is, the boundaries in the simulation space between system 
failure and system success. More in detail, the focus is in constructing an ROM of type classifier capable 
to predict the location of the reliability surface with a very low number of samples of the high fidelity 
model. 
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In particular the following improvements are suggested: 

• Expansion of the current multi-processor AS capabilities to include a general batch selection 
framework 

• Introduction of a collection of topology-inspired batch selection AS techniques that could be adapted 
by any scoring function 

• Enabling of reliability surface (RS) thickening to allow adjustment between exploration and 
exploitation 

• Extra visualization capabilities that visualize the locations of training points, adaptively sampled 
points, reliability surfaces, and the landscape of scoring functions during the AS process of 2D 
datasets for testing and debugging purposes. 

The proposed techniques are considered exploratory and potentially complementary to some of the 
existing AS capabilities in RAVEN. 

In the following sections, we review the AS pipeline for RS search and introduce the batch mode 
selection in Section 2.2. The topology of the scoring function is discussed as a class of topology-
inspired batch selection strategies in Section 2.3. In Section 2.4, we focus on implementation details of 
general and topology-inspired batch selection in RAVEN. RS thickening is described in Section 2.5, 
together with additional visual capabilities for testing and debugging. We experiment with a set of testing 
datasets and summarize the strengths and weaknesses of our proposed approaches in Section 2.6, and we 
discuss future research directions in Section 2.7. 

2.2 Adaptive Sampling Pipeline for Reliability Surface Search in 
Serial and Batch Modes 

In a typical setting for RS search, new training samples are selected in serial, as illustrated in Figure 2 
(left). We begin by selecting a limited number of initial training points (via forward sampling strategies 
such as Monte Carlo) and obtain their labels by querying the high-fidelity simulation code (e.g., the 
computationally expensive RELAP-7), referred to as the labeling source or the oracle. Second, a ROM 
classifier (e.g., Support Vector Machines) is trained with the given training set. Third, the ROM is used to 
predict the labels for all grid points in the domain space and a set of candidate points surrounding the RS 
is identified based on these predicted values. Finally, each RS candidate is ranked based on an AS scoring 
function (usually derived from qualitative or quantitative relations between the training points, and their 
observed and predicted values), and a single candidate is selected to be added to the training set to begin a 
new round of iterative learning process. On the other hand, sometimes for parallel labeling environment 
or models with slow training procedures, batch mode AS allows us to query instances in groups.1 As 
illustrated in Figure 2 (right), instead of selecting candidate one at a time, a batch size of b candidates are 
selected at the same time to be added to the training set during the iterative process. 
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Figure 2. AS pipelines for RS search: serial mode (left) and batch mode (right). Training points are 
marked by crosses, RS candidates are marked by circles with selected ones marked in red. 

Batch mode AS may be more efficient than the serial mode under certain scenarios from a 
computational point of view. Sometimes retraining a classifier whenever a new training point is added can 
be time-consuming, for example, with large ensemble models and complex models for structured 
prediction tasks,1 it may be more efficient to select and label a set of points before the retraining process.2 
In addition, scoring functions (e.g., based on error and variance reduction) may be prohibitively expensive 
to evaluate.1 Further, under some experimental procedures, multiple labels can become available 
simultaneously; and batch mode takes advantage of such a parallel labeling instance.2 Essentially, at the 
moment when the training of the surrogate model and the evaluation of the scoring cost have a 
computational cost not negligible with respect the evaluation of the oracle a batch approach is preferred. 

In this report, we explore the general batch selection as well as topology- inspired batch selection 
processes in RAVEN, to understand their strengths and weaknesses. 

2.3 Designing Topology-Inspired Batch Selection 
The main challenge in batch mode AS is how to carefully select a set of batched candidates. For a 

fixed batch size b > 1, selecting the best b candidates based on their scores, referred to as the naive 
strategy, usually does not work well because it does not consider the overlap in information content 
among the “best” instances.1 Existing algorithms use diversity,2 density,3 or gradient search4 in their batch 
constructions. In our exploration, we take into consideration the topology of the scoring function in our 
batch construction where points are selected from regions with distinct topological features. 

The topology-inspired batch selection pipeline is illustrated in Figure 3 (left). It is just a minor 
modification from the general batch selection process in Figure 2 (right) where the choice of candidates 
relies on some topological feature of the scoring function. Take a one-dimensional scoring function for 
example, as the one shown in Figure 3 (right), the naive strategy in (a) may choose two candidates that 
are virtually identical with almost redundant information; while topology-inspired strategies in (c) and 
(d) construct batches from topologically distinct regions. In (c), candidates are chosen among the local 
maxima of the scoring function with the highest function values, referred to as the maxV strategy; while 
in (d) they are chosen to be the top b local maxima with the highest persistence values, referred to as the 
maxP strategy. Here, persistence5,6,7 is a topological notion that quantifies the significance of topological 
features of a function; local maxima with high or low persistence values are considered topological 
signals or noise respectively within their local neighborhoods. Yellow points with the highest persistence 
values in (d) therefore represent locally distinct and well-separated regions within the “landscape” of the 
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given scoring function; therefore selecting these points has the potential to maximize information gain. 
For a brief introduction to the notion of persistence, see Reference 8. 

 
Figure 3. Left: topology-inspired batch selection AS pipeline for RS search. Right: (a) naive strategy 
selects the top b candidates with the highest scores; (b) local maxima and local minima paired by 
persistence, e.g., the red points have persistence valued at h – their height difference; (c) maxV strategy 
selects the top b local maxima with the highest scores; and (d) maxP strategy selects the top b local 
maxima with the highest persistence values. 

Our framework is independent from and could be adapted for any scoring function as long as they 
allow for topological representation. The strategies mentioned here are just simple examples of a large 
class of topology-inspired ones that may be suitable for the batch mode selection. In addition, since the 
detection of local maxima and computation/approximation of persistence generalizes to high dimensions,9 
these strategies are applicable for high dimensional AS as well. 

2.4 Batch Selection Implementation in RAVEN 
We rely on the existing parallel (multi-processor) AS framework (as described in Reference 10) to 

simulate the general batch selection as well as the topology-inspired batch selection in RAVEN. The 
parallel framework in RAVEN relies on a specific data structure called a hanging point list (HPL) that 
keeps track of candidate points submitted for evaluation. In a typical scenario, multiple processors are 
available as computational resources during the AS process (e.g., we use 10 processors in our 
experiments). As illustrated in Figure 4, all processors are available at the beginning of the AS process. 
Suppose Processor 1 is the first processor that is available, it follows the serial AS pipeline from left to 
right, trains the ROM with the current set of training points, identifies RS candidate points, then scores 
the candidates and selects the top one candidate x that is not in the HPL. It pushes x to the HPL and query 
the oracle with x. After the query finishes its execution and an observation (i.e., true response) is obtained 
for x from the oracle, removes x from the HPL, and finally adds x to the training set. While Processor 1 is 
at some stage of its AS pipeline, due to the parallel implementation, Processor 2 (a second available 
processor), is running its own AS pipeline independently. Since querying the oracle with a selected 
candidate x is typically time- consuming, Processor 1 and 2 (and potentially additional processors) could 
be running simultaneously (Figure 4). Processor 2 therefore relies on the HPL to keep track of RS 
candidates already submitted for evaluation to avoid evaluating the same point twice. Such a parallel 
implementation using HPL is quite efficient in the AS process, since a given processor always takes 
advantage of the best available information (i.e., an updated training set) during its ROM training stage 
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and greedily selects the top candidate for evaluation by the oracle. This is referred to as the greedy 
strategy. 

 
Figure 4. Parallel implementation of AS in RAVEN, where the process (marked within a grey box) of 
querying the oracle with a selected candidate is typically a time-consuming step within the pipeline. 

2.4.1 Implementation of General Batch Selection 
Given the above AS parallel framework, we now focus on simulating a general batch selection in 

RAVEN with a data structure called a batch buffer (BB). The batch selection size b is therefore controlled 
by the size of the BB. As illustrated in Figure 5, when a processor (e.g., Processor 1) becomes available, it 
first checks to see if the BB is empty. If the BB is empty, the processor proceeds by following the serial 
AS pipeline (Figure 4 top) with minor modifications. That is, after RS candidates are identified, the 
processor selects the top b candidates (based on a given ranking criteria) and adds them to the BB; it takes 
a candidate x from the BB, pushing x to the HPL, obtaining its evaluation from the oracle, then removing 
x from the HPL and adding it to the training set. On the other hand, if the BB is not empty, then the 
processor proceeds by taking a candidate x from the BB and starts the evaluation process without 
retraining the ROM. Each of the other available processors follows the same pipeline in parallel, where 
the ROM is only retrained when the BB becomes empty. The addition of the BB to the existing parallel 
implementation therefore introduces a delayed effect within the first few stages of the AS pipeline, 
namely, retraining the ROM, identifying and scoring the RS candidates. At a first glance, using the BB 
for the batch mode selection does not appear to have obvious advantage over the existing framework; 
however, as demonstrated in Section 2.6, under certain scenarios, a batch mode selection with carefully 
selected candidates could potentially outperform the greedy strategy. 

 
Figure 5. Using batch buffer to simulate batch selection in RAVEN.
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2.4.2 Implementation of Topology-inspired Batch Selection 
Topology-inspired batch selection in RAVEN adapts the general batch selection framework and takes 

the topology of a given scoring function into consideration. Its implementation details are illustrated in 
Figure 6, by making small modifications and incorporating topology-inspired batch construction within 
the general framework of Figure 5. To detect local maxima among the RS candidates and to compute their 
persistence, we employ the underlying grid as the combinatorial structure that connects the candidate 
points, and use the established Morse-Smale approximations for our computations. In a nutshell, a point 
whose scoring function value is higher than all of its grid neighbors are considered a local maximum; and 
its persistence is approximated by the function value difference between itself and its nearby saddle point 
(see Reference 9 for details). 

 
Figure 6. Using batch buffer to simulate topology-inspired batch selection in RAVEN. Modification with 
respect to the general batch selection is highlighted in yellow.

 
2.5 Reliability Surface Thickening and Additional Features 

In the existing AS implementation,10 the location of the RS is not exactly determined but rather 
bounded by a layer of grid points within its proximity, which in turn forms a set of RS candidates. By 
introducing a thickening parameter, we enlarge the search space of the RS into multiple layers of 
candidates, therefore allowing adjustment between exploration and exploitation (see Figure 7 for an 
example). 

 
Figure 7. Thickening of RS for exploration. On the left: the first and second layers of RS candidates on 
a simple grid are highlighted with dark and light colors respectively. On the middle and on the right: an 
RS is visualized with a thickening parameter valued at 1 and 2 respectively. Training points are 
represented by crosses or triangles, adaptively sampled points are black circles, and RS candidates are 
solid circles colored by their scores (high scores are in red while low scores are in blue). 
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We also add extra visualization capabilities in RAVEN during the AS process of two-dimensional 
datasets for testing and debugging. Take Figure 7 middle for an example, for a single AS iteration, we 
mark the locations of training points, adaptively sampled points and reliability surfaces; as well as 
visualize the scoring functions restricted to the RS and the entire domain (Figure 8). 

 
Figure 8. Visualization of the distance scoring function over the entire domain during the four initial 
training stages for the Circle dataset (using a batch size of 4). Red corresponds to high and blue 
corresponds to low function values. Regions with the lowest function values overlap with locations of the 
training points. 

2.6 Testing 
2.6.1 Testing Environment 
2.6.1.1 Testing Datasets. We provide a collection of 2D testing datasets for evaluating the strengths 
and weaknesses of our proposed approaches. We test on 2D functions with simple (Figure 9) and complex 
(Figure 10) RS boundaries. These functions serve as the oracles within our AS pipeline and they are 
queried to obtain the true responses from selected candidate points. The Circle, GMM (the name is chosen 
since the function is generated as a Gaussian Model Mixture), and Salomon datasets are generated from 
functions with closed forms. The RELAP-7 and Islands datasets are inherited from the set of existing AS 
testing cases in RAVEN, where points are uniformly sampled in the cumulative distribution function 
range space, not in the domain space. The Hubble and Face datasets originate from grey-scale images. 
RSs (colored in purple) are defined by certain function value thresholds that create interesting boundaries, 
in particular, a large number of “islands” (connected components) exist for the Hubble and Face datasets, 
increasing the topological complexity of their corresponding reliability surfaces. 

 
Figure 9. Testing datasets: 2D functions with relatively simple RS boundaries. 
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Figure 10. Testing datasets: 2D functions with complex RS boundaries. 

2.6.1.2 Scoring Functions. Our proposed topology-inspired batch selection is independent of the 
choice of a scoring function. Various scoring/utility functions exist in literature1 that measure uncertainty 
or information content associated with a given candidate. For example, in RAVEN, the score of an RS 
candidate point is based on its distance to the nearest training point (that has been or is being explored 
[i.e., points in the training set and the HPL]) weighted by the number of times its predicted label has 
changed during the iteration – such a strategy is referred to as the weighted distance scoring. Its simpler 
unweighted version, that is, the one based on just the distance between an RS candidate and its nearest 
training point, is referred to as the distance scoring. The weighted distance scoring is a fine-tuned scoring 
function that works particularly well for the RS search/classification problem. It is similar to the straddle 
scoring function11,12 (and its variation in Reference 13) that is specially designed to target the RS recovery 
problem, which scores points based on a mixture of high predicted variance and a predicted mean near the 
threshold value. Due to the parallel implementation of AS in RAVEN using HPL, the greedy strategy 
using the weighted distance scoring function bears some resemblance to the believer strategy13,14 that we 
have explored in some previous work,15 since the points in the HPL (the ones being evaluated by the 
oracle) are factored into the computation of the scoring function. 
2.6.1.3 Convergence Criteria and Monte Carlo Sampling. In the AS framework of RAVEN, an 
iterative procedure achieves its convergence when there are no changes in the location of the RS after a 
certain number (e.g., 25) of consecutive iterations.10 To measure the final accuracy of our extracted RS at 
the time of convergence, we use the F1-score,16 which is a function of precision and recall. Let TP, FP, 
FN denote true positives, false positives and false negatives in comparing the extracted RS from the ROM 
and the ground truth. The precision p equals TP/(TP + FP), while the recall r is defined by TP/(TP + FN). 
The F1-score is then defined by 2pr/(p + r). In RAVEN, Monte Carlo (MC) sampling can be used to 
generate an initial set of training points until an ROM (e.g., Support Vector Machine classifier) could be 
properly trained. In addition, MC sampling kicks in whenever the RS candidate set does not have any 
“new” samples, that is, whenever all of the candidates have zero scores (because they are either in the 
training set or in the HPL, or they have never changed labels in the training process). Such MC sampling 
typically occurs toward the end of the AS process when it is near convergence to ensure that the region of 
interest has been sufficiently explored (such a process may have interesting consequence as we point out 
later). 
2.6.1.4 Adaptive Sampling Strategies. For a given dataset, we experiment with a variety of AS 
strategies (described in Section 4). This includes the greedy strategy, the topology-inspired batch 
selection strategies with batch sizes of 4 and 8, and strategies involving the thickening of the RS with 
2 layers. For example, 4_maxv is the maxV strategy with batch size 4, tg corresponds to the greedy 
strategy with a thickened RS, and t8_maxp is the maxP strategy with a thickened RS and batch size 8. As 
mentioned in Section 3, naive batch selection which chooses the b-best instances typically does not work 
well due to information overlap; as a sanity check, we still include the naive batch strategy with batch 
sizes 4 and 8 in a few of our testing cases for comparison purposes. For a single AS trial, to obtain 
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consistent results for comparison, we use the same and sufficiently large (e.g., 20) initial training set (such 
that the ROM is properly trained from the beginning) across all AS strategies. 
2.6.1.5 Other Experimental Details. For a given dataset, we run a number of AS trials (e.g., 
5 or 10) until convergence with randomly generated initial training set. We obtain an F1-score 
convergence plot for each trial, whose x-axis corresponds to the number of points in the training set and 
y-axis is the F1-score of the RS at the end of each (batched) iteration. We also compute a point-wise 
median F1-score plot across all trials. However, it turns out that such a median plot introduces hard-to-
interpret biases and is not as informative as what we would expect. Since MC sampling influences how 
we interpret our results, we add additional visualization (i.e., horizontal bars colored by the corresponding 
AS strategy) in the plot when MC sampling takes place during an AS iteration. 

2.6.2 Experimental Observations 
The default experimental setting involves multiple processors (e.g., 10) using the weighted distance 

function. To understand the effect of the existing parallel implementation on the AS process, we 
experiment with our testing datasets under the setting of a single processor and multiple processors 
respectively. Since our topology-inspired strategies do not rely on specific choices of scoring functions, 
we also experiment with both the distance scoring and the weighted distance scoring for performance 
comparisons. We summarize our key observations below. 

The main conclusion is that the greedy strategy typically performs very well for a simple RS, while 
the topology-inspired batch selection strategies could potentially outperform the greedy strategies for a 
complex RS. 

2.6.2.1 For Complex RS, Topology-Inspired Batch Selection Can Sometimes Outperform 
the Greedy Strategy. For an RS that contains a number of “islands” (connected components) or has 
boundaries with complex geometry, for example, in the case of the Face and Hubble datasets, topology-
inspired batch selection can outperform the default, greedy strategy, in particular, within the 
“intermediate” stages of the AS process. The performance gain could be largely contributed to the 
topology-inspired batch selection being able to explore the domain more efficiently by selecting multiple 
candidates from well-separated (and in some cases, independent) regions (see Figure 11 for an example). 
On the other hand, although the greedy strategy always takes advantage of the updated training set for the 
ROM at the beginning of each iteration, the fact that it only chooses the top one candidate sometimes 
limits its exploratory ability. 

 
Figure 11. Visualizations of the data domain during several early stages of the AS process for the Face 
dataset using 4 maxP strategy. We visualize the locations of the current training points (in triangles), 
selected RS candidates (in black circles, also pointed by arrows) and the reliability surface (red means 
high and blue means low function values). During each iteration, we choose the top 4 local maxima with 
the highest persistence. The selected RS candidates are shown to be well separated and sometimes belong 
to different connected components of the RS.
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Take Figure 12 for an example using a particular trial of the Face dataset. To explain our convergence 
results better, we divide the x-axis of its convergence plot into three (data-dependent) regions: the early 
convergence region describes convergence behavior when the number of training points is between 0 and 
200; the intermediate convergence region contains roughly 250–1000 training points; and the end 
convergence region describes convergence behavior beyond 1000 training points. As illustrated in 
Figure 12(c), the topology-inspired techniques, namely, t8_maxP (dark purple), 8_maxP (light purple), 
and 4_maxV (light orange) all outperform the greedy strategy (light blue) within the intermediate 
convergence region. The greedy strategy is only able to have drastic performance improvement with the 
help of some MC samplings (as visualized by the light blue bars in Figure 12b) within the end 
convergence region. In other words, the MC strategy helps the greedy strategy to get “unstuck” from 
locally optimal but globally unsatisfactory scenarios (as detailed in Section 2.6.2.3). In addition, in this 
example the naive strategies, Naive 4 (light green) and Naive 8 (dark green) do not perform very well due 
to the information overlap as discussed in Section 2.3. However, it is hard to compare the performances 
among the various AS strategies within the early convergence region (Figure 12d), as they all appear to 
perform comparably with wide fluctuations followed by stable convergences. We have some evidence 
that topology-inspired batch selection strategies help to explore a large region of the domain space during 
the early convergence stage (e.g., Figure 11); however systematic study is left for the future work. 

For completeness, we also include two other trials for the Face dataset under the same setting with 
randomized initial training sets in Figure 13. In Figure 13(a), the topology-inspired 4_maxV (light 
orange) and 8_maxV (yellow) outperforms the greedy strategy (light blue) within the intermediate 
convergence region. The greedy strategy is only able to improve its performance by relying on a MC 
sampling toward the end convergence region. It is also interesting to note that in this particular trial, the 
naïve_8 strategy (i.e., naive batch selection with batch Size 8, dark green) also outperforms the greedy 
strategy for a significant period of time within the intermediate region. 

 
Figure 12. Convergence plot of the Face dataset using the weighted distance scoring with 10 processors, 
with various zoomed- in views. X-axis indicates the number of points in the training set; Y-axis shows the 
F1-score. Each colored curve corresponds to the convergence behavior of an AS strategy. The thick bars 
pointed by the black arrow in (b) reflect when the candidates are obtained from a MC (instead of an 
adaptive) sampling procedure. 
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Figure 13. Convergence plots of the Face dataset using the weighted distance scoring with 10 processors 
with zoomed-in views. 

This is possibly due to the fact that the naive batch selection with a large enough batch size could 
sometimes get “lucky” in exploring unknown regions. In Figure 13(b), a couple of topology-inspired 
strategies, noticeably 4_ maxP (pink) and 8_maxV (yellow) outperform the greedy strategy within the 
intermediate convergence region until the MC sampling kicks in to help improve the performance of the 
greedy strategy. 

We also showcase several trials of the Hubble dataset (Figure 14). Figure 14 (a), (b), and (d) give 
some evidence that the topology-inspired batch selection strategies could sometimes outperform the 
greedy strategy (light blue): (a) and (d) demonstrate that the visible performance gains are within the 
intermediate convergence range; while (b) showcases a performance improvement spanning both 
intermediate and end convergence regions. Figure 14(c), on the other hand, is an example of the tg 
strategy (greedy strategy with thickened RS) consistently having the best performance. Among all these 
trials, MC samplings help to improve the performance of greedy strategies (light and dark blue) within the 
end convergence regions. 
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Figure 14. Convergence plots of the Hubble dataset using the weighted distance scoring with 10 
processors. 

Similar performance improvements using topology-inspired techniques are also observed for the 
Islands dataset under the same setting (Figure 15), where the topology-inspired batch selection techniques 
outperform the greedy strategies across the intermediate region in (a), both early and intermediate regions 
in (b), early region in (c) and almost all three convergence regions in (d). Finally, we obtain similar 
observations across the Face and Hubble datasets under the single processor setting and using the distance 
scoring (results omitted here). 

In summary, the topology-inspired batch selection strategies can outperform the greedy strategy, in 
particular, within the intermediate convergence regions. This is not too surprising during this stage of the 
AS process, as an ROM is reasonably trained but would still benefit quite a bit from more exploratory 
strategies to improve its fit. Within the end convergence region, when an ROM is sufficiently well trained 
and only requires tiny amount of tweaking, exploratory strategies may lose their attractiveness. 
Furthermore, the topology-inspired strategies that outperform the greedy strategy vary across different 
trials. It would be a difficult task to try to predict what particular strategies would work well for a 
particular dataset. It depends on a fine balance between the exploitation and exploration, and relies on 
factors such as the initial training set, batch sizes, implementation details, and the topological 
complexities of the scoring functions and the reliability surfaces. 
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Figure 15. Convergence plots of the Circle and GMM datasets using the weighted distance scoring with 
10 processors.

 

2.6.2.2 For simple RS, Topology-inspired Batch Selection does not Improve in 
Performance Against the Greedy Strategy. For an RS that contains very few connected 
components and has simple boundaries, for example, in the case of the Circle and GMM datasets 
(Figure 15), the greedy strategy typically performs comparably and some-times better than the topology-
inspired batch selection strategies; then choosing the appropriate strategies relies on whether there exists a 
parallel labeling environment or models with slow training procedure (see Section 2). If these conditions 
are not suitable for the problem at hand, the greedy strategy might be a simpler and easier choice. 
2.6.2.3 MC Sampling Occasionally Helps to “Unstick” the Greedy Strategy. As described 
in Observation A, the greedy strategy has limited exploratory ability and occasionally would get 
“stuck” in some locally optimal but globally unsatisfactory ROMs. That is, when the current training 
set does not contain any new information to improve the ROM, then the MC sampling is enabled within 
the RAVEN implementation. As illustrated in Figure 12 and Figure 13, MC sampling helps to explore 
drastically different regions of the domain when the greedy strategy gets stuck, therefore improves the 
overall performance. 
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2.6.2.4 RS Thickening Can Occasionally Help With the Domain Exploration. This is due to 
the added exploratory power using a slightly enlarged RS candidate set ( see Figure 14(c) for an 
example). However, learning the right thickening parameter might be nontrivial. 

2.7 Discussion 
In this section, we review our exploratory effort in introducing batch selection, in particular, 

topology-inspired batch selection framework to RAVEN. We evaluate our proposed techniques over 
testing datasets and discuss their strengths and weaknesses. We demonstrate that for complex limit 
surfaces, topology-inspired techniques could help to explore the domain space more efficiently, in 
particular, within intermediate convergence regions. It would be interesting to further study their effects 
on performance during the early convergence regions where the exploration also plays an important role. 
Furthermore, since the MC sampling helps to improve the domain exploration when the AS process gets 
stuck at local optimal ROMs, it is possible that the best strategy would be a hybrid strategy involving the 
adaptive greedy strategy, adaptive (topology-inspired) batch selection and the MC sampling. Finally, the 
topology-inspired batch selection strategies described in this report are among a few examples of 
incorporating topology into active learning (e.g., Reference 17), and more generally, into the sensitivity 
analysis of nuclear datasets (e.g., Reference 18). We envision new techniques to be developed along these 
directions in the future by combining topological data analysis with machine learning techniques to 
enhance analysis and visualization capabilities within RAVEN. 

3. THEORETICAL DEVELOPMENT AND IMPLEMENTATION 
RESULTS OF SURROGATE CONSTRUCTION ALGORITHMS FOR 

RAVEN’S MULTI-PHYSICS MODELS 
3.1 Introduction 

This section is dedicated to the theoretical development and implementation of surrogate construction 
algorithms for general multi-physics models. This work intends to support the application of reliability 
analysis methods to the coupled physics modules under RAVEN. Specifically, the first part of the work 
presented is concerned with development of reliable surrogate models for multi-physics, nonlinear, 
high-dimensional models. The second part focuses on implementation and demonstration of such 
algorithms to the MAMMOTH environment, coupling the neutronics model of RattleSnake and the fuel 
performance analysis of the BISON module. Theoretical background, associated algorithms, and their 
implementation details are discussed in this section of the report. 

The utility of these surrogate models is essential to reliability analysis studies, because it allows 
exploration of the combined operational phase space and identification of the contours of the failure 
surface (i.e., limit surface and reliability surface). For this process to be successful, the theory and 
associated surrogate construction algorithms must address the primary challenges facing existing 
surrogate construction techniques, including the curse of dimensionality, the robustness of the predictions, 
and the ability to handle multi-physics models. Our goal is to develop a new algorithm in surrogate 
construction that is capable of upper-bounding its own prediction errors and employing efficient reduced 
order modeling techniques to address the high dimensionality of the models’ interfaces and the 
multi-physics nature of their coupling. These capabilities are currently lacking in most of the state-of-the-
art surrogate construction methodologies. The theory and algorithms developed here are expected to be 
invaluable to a wide range of U.S. Department of Energy initiatives, specifically those dealing with 
advanced modeling and simulation, safety analysis, uncertainty quantification, and sensitivity analysis; 
they all require access to highly accurate and fast-executing surrogate models. 

The theoretical background and developments are reported here for a number of algorithms serving 
collectively as a framework for performing dimensionality reduction and surrogate model construction for 
general multi-physics models. In particular, we develop a basic dimensionality reduction algorithm for a 
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single physics model and describe the transformation between the original and reduced variables. Further, 
we explain how the errors resulting from reduction are quantified. Next, the dimensionality reduction 
algorithm is extended to a multi-physics setting by applying it at the interface between each two models. 
With this application, one can identify the effective dimensionality for the overall multi-physics model. 
Error analysis is also extended to the multi-physics case. Numerical experiments supporting the 
developed theory are also contained herein, which will demonstrate application to the MAMMOTH code 
system,19 coupling RattleSnake and BISON codes for coupled neutron transport and thermal analysis 
calculations. 

3.2 Background 
Our overarching objective is to develop a fast-executing surrogate model with quantifiable error 

bounds. Any surrogate construction algorithm requires a training process where an assumed form for the 
surrogate model (i.e., a parametric expression such as a polynomial fit with unknown coefficients), is 
trained against samples generated by the original model.20 This training process depends on the number of 
model parameters. Therefore, a key ingredient of our proposed approach is to perform an initial reduction 
in the number of model parameters prior to construction of the surrogate. The proposed reduction is 
different from a conventional screening approach that is used to identify a subset of the model parameters 
that are considered to have the most dominant impact on the model’s responses of interest. The 
conventional screening approach is not expected to be feasible for a general multi-physics model with 
huge input and output data interfaces for each of the sub-physics models, which typically corresponds to 
state functions that are distributed in the phase space (i.e., the power distribution and fission rate density 
representing the input parameters to thermal analysis calculations). Performing a parametric study for this 
distribution is computationally infeasible. 

Instead, we will adopt a dimensionality reduction approach, where a linear transformation of the 
parameters is identified via a range-finding algorithm (RFA).21,22 The RFA identifies a small subset of 
effective parameters in the transformed space that can be used to describe the majority of response 
variations. Clearly, the conventional parametric screening approach may be thought of as one special case 
of the RFA approach, wherein the standard coordinate system is used to select the effective parameters. 
However, the RFA approach offers two advantages over the standard parametric screening approach, 
including the ability to identify an optimum transformation that minimizes the number of effective 
parameters while upper-bounding the errors resulting from discarding the rest of the parameter variations. 
The second advantage is key to ensuring the reliability of the reduction process, which is currently absent 
from conventional parametric screening approaches. 

Accordingly, we adopt a two-step process for construction of the surrogate. The first step involves 
application of RFA to reduce the effective dimensions of the input and output interfaces for the respective 
sub-physics models. Once identified, construction of the surrogate model is recast in terms of the reduced 
dimensions. 

In this background section, we first provide an overview of the RFA, which is considered to be the 
cornerstone of all subsequent algorithms developed here. In the following sections, we apply RFA to 
single physics models then extend it to multi-physics models, along with development of error metrics 
that bound the reduction errors. Finally, a surrogate construction algorithm is presented that is based on 
the reduced dimensions for the overall multi-physics model. 

An RFA may be described as follows: consider a model described by a general nonlinear function f 
that relates nx input parameters denoted by a vector x ∈ !nx to ny output responses denoted by a vector

y ∈ !ny : 

( )y f x=  (1) 
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and without loss of generality, we assume that this function passes through the origin (i.e., 0y =  when 
0x = ); this is possible via a simple translation of coordinates. The objective of the RFA is to identify 

two subspaces: one for input and another for output spaces, denoted respectively by two matrix operators, 

xK  and yK . The matrix zK  (where z denotes, respectively, x and y) is extremely rank-deficient (i.e., its 
rank is much smaller than its dimension): 

K z ∈ !
nz×nz  and ( )z z zrank r n=K =  (2) 

These matrices are used to restrict the variations of the respective model interface variables (i.e., the 
input parameters and output responses) on hyperplanes (i.e., mathematical subspaces). This restriction 
may be described by a projection operation as follows: 
( )r

xx x= K  and ( )r
yy y=K  (3) 

where the (r) superscripts denotes that the respective variables are constrained to a subspace. A 
rank-deficient matrix may be written using an orthogonal decomposition as follows: 

T
z z z=K Q Q  (4) 

where Qz ∈ !
nz×rz  is a skinny orthonormal matrix (i.e., the number of its columns is much smaller than 

the rows, with the columns being ortho-normal), with rz columns representing a basis for a subspace, 
denoted hereafter by the active subspace 

[ ] [ ] [ ]*1 *2 *....
zz z z z r

⎡ ⎤= ⎣ ⎦Q Q Q Q
 

where [Qz ]*i ∈ !
nz×1  is the ith column of the matrix zQ . An active subspace for the input parameter 

space, by definition, spans all input parameter variations that have dominant impact on the output 
responses. Or in other words, the output responses are insensitive to parameter variations that are 
orthogonal to the active parameters subspace. 

The proposed surrogate model takes advantage of this behavior by limiting parameter variations to 
the active parameters subspace. Similarly, an active subspace in the output space implies that the majority 
of the output variations is contained in the active response subspace, with the variations in the orthogonal 
complement of that subspace being very small; therefore, they can be discarded in construction of the 
surrogate model. 

Next, we would like to distinguish here between the pre and post-reduction variables for the various 
models interfaces. For example, consider a generic z interface, where the original space has dimension nz, 
implying that z has nz degrees of freedom. The reduced variable z(r) also lives in the original space and has 
nz components; however, its variation is constrained to a subspace of dimension rz, implying that there are 
nz – rz perfect correlations between its nz components. The rz components of z along the active subspace 
are described by another vector that lives in an rz dimensional space, referred to as the active degrees of 
freedom of the variable z. This smaller vector is important because it will be used to construct the 
surrogate model. 

The relationships between these variables are described by the following equations: 
( )r

zz z= K , 
( )r T
DOF zz z= Q , and 

( ) ( )r r
z DOFz z= Q   . (5) 

The first equation implies ( )rz  is the projection of z along the active subspace, which is spanned by 
the columns of the matrix zQ . The second equation calculates the rz components of ( )rz  along the active 
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subspace and aggregates them in a vector ( )r
DOFz . The last equation describes how the reduced variables 

may be reconstructed from the active Degree of Freedom DoFs. Note that in this reconstruction ( )r
DOFz  has 

rz components, while ( )rz has nz components, which follows from the fact that zQ  has nz rows and rz 
columns. 

Now, let us assume there is interest in building a surrogate model for the active DoFs of the output 
responses as a function of the active DoFs of the parameter space. This may be described as follows: 

yDOF
SUR = !f xDOF

(r )( )
 (6) 

where the tilde implies a parametric representation selected to approximate the original function f. The 
superscript “SUR” denotes the surrogate predictions, which requires some training to identify the 
“unknown” features of the surrogate model, often in the form of unknown coefficients. For example, 
consider that a second order polynomial is selected for the surrogate model, this may be described as 
follows: 

yDOF
SUR = !f xDOF

(r )( ) = gT xDOF(r ) + xDOF
(r )THxDOF

(r )

  . (7) 

This surrogate could be re-cast in terms of the original variables as follows: 

( )SUR T T T T
y x x xy g x x x= +Q Q Q HQ

 (8) 

where ySUR is the surrogate predictions for the original variables. The goal of surrogate training is to 
determine the gradient vector g and the Hessian matrix H, whose elements represent the unknown 
coefficients of the surrogate model. Notice that g has only rx components and H is rx x rx. If no reduction 
is done a priori, the number of unknown coefficients would be dependent on nx (i.e., the original 
dimensionality of the parameter space). Also, note that in this brute force approach, each model response 
would be constructed using a separate surrogate model, implying that the total number of unknown 
coefficients would be proportional to ny, which leads to intractable computational burden in terms of 
storage and data processing. 

It is noteworthy to mention here that the proposed surrogate construction approached preceded by a 
dimensionality reduction introduces two sources of errors: the first source is due to the parametric form 
employed for the surrogate model and the second is due to the restriction of the parameter and response 
variables to their respective active subspaces. There is no general approach for quantification of the 
former source of error, especially when the model is treated as a black-box. An estimate for this error is 
typically done using the residual error of the regression process that is used to identify the unknown 
coefficients of the surrogate model. The latter source of errors can be quantified using the RFA. 

Quantification of reduction errors is an essential requirement of the surrogate model developed here. 
To describe these errors, re-write the reduced model as follows: 

( )y xy f x=K K   . (9) 

This representation implies that the original function remains unchanged and the reduction errors are 
resulting solely from constraining input parameter variations to the active parameter subspace and the 
output variations to the active response subspace. To describe these errors, we distinguish between errors 
resulting solely from reduction in the parameter space, the response space, and a combination thereof. 
First, consider the errors resulting from the input parameter space reduction: 

( ) ( )   over all x x x xe f x f x x Sε= − ≤ ∈K  (10) 
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The ex describes the errors in the output responses due to a reduction in the input parameter space, 
with εx representing an upper-bound for all possible x values. The second source of errors is due to 
reduction in the response space: 

( ) ( )   over all y y y xe f x f x x Sε= − ≤ ∈K  (11) 

This reduction implies that the responses are constrained to an active subspace assumed to contain the 
majority of response variations. Finally, the combined error for two simultaneous reductions in both the 
input parameter and output response spaces is given by: 

( ) ( )   over all xy y x xy xe f x f x x Sε= − ≤ ∈K K  (12) 

Earlier work has developed the theoretical background required for the quantification of these three 
error bounds. Interested readers may refer to Reference 22 for quantification of errors resulting from 
reduction in the input space, Reference 23 for reduction errors in the output space, and Reference 24 for 
the simultaneous reduction in both input and output space. 

It is important to mention here that for a given selection of the active subspaces, one can create upper-
bounds on the errors resulting from the reduction.21 And for a given upper-bound on the error, one could 
find an infinite number of active subspaces that satisfy this upper-bound. The goal of the RFA is to 
identify an active subspace with the smallest possible rank in order to realize the benefits of the reduction 
which may be measured in terms of the cost required to build the surrogate model and the cost required 
for its execution. By way of example, reduction in the parameter space may be rendered via three 
approaches, gradient-free and gradient-based reduction, and a third hybrid approach.25 

The gradient-free approach employs an upstream physics model to determine the active subspace for 
the parameters space of the downstream physics model. This approach is very similar to a proper 
orthogonal decomposition that has been well studied in many communities.26 This is possible if the 
downstream model is used to calculate the parameters for the function f. 

The gradient-based approach employs derivatives of the function f with respect to its parameters x to 
determine its active subspace.22 For example, if f is a linear function, the gradient of f is selected as the 
optimum active subspace because all parameter variations that are orthogonal to the gradient will produce 
zero changes in the output responses. Earlier work has shown that for a general nonlinear function, the 
active subspace generated by applying the RFA algorithm to the gradient of f can be used to determine the 
parameters active subspace.22 

Note that the gradient-free approach implies that the reduction rendered for a given physics model is 
determined by an upstream physics model; however, the gradient-based approach employs the given 
physics to determine its own reduction. Hybridizing both of these approaches would ultimately lead to a 
better reduction. Examples of such hybridization potential have been recently proposed, see for example 
References 27 and 28. We will, however, limit our algorithms development to the gradient-free approach 
only, as the physics models employed for demonstration (RATTLESNAKE and BISON) currently do not 
have capabilities to calculate the derivatives. Extension of the proposed algorithms using gradient-based 
reduction and its hybridization with gradient-free reduction will be left to future work. 

Now, we turn to the mechanics of the RFA algorithms and how they are used to construct active 
subspaces for the parameter and response spaces. First, we discuss the construction of the response active 
subspace described as follows: 

1. Specify the range of allowable x variations, contained in the volume x xS ∈ ° . 

2. Specify preset tolerance yε  (i.e., upper-bound), on the reduction errors for the responses. 
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3. Generate l+ls random samples for x (i.e., { } 1
sl l

i xix S+

=
∈ ). 

4. Generate l+ls realizations of y, i.e., { } 1

l
i iy =

 and form two matrices. 

5. Y = y1 y2 ... yl
!
"#

$
%&∈ !

ny×l  and Ys = yl+1 yl+2 ... yl+ls
!
"#

$
%&
∈ !ny×ls .  (13) 

6. Compute cY  and sY  by standardizing the matrices Y and sY , respectively. 

7. Using cY , compute orthonormal basis yQ  with rank ry 

8. Using sY , assess whether yQ satisfies the tolerance yε . 

9. If the desired tolerance is not met, increase l. 

The volume Sx in Step 1, defined by the user, identifies the allowable ranges for the parameters. This 
volume may be defined in a number of ways depending on the modeling conditions. For example, the 
simplest approach is to define an interval range for each of the parameters. If, for example, a parameter 
represents the concentration of a given material, then the interval can be selected to span the expected 
range of that concentration variation over the envisaged horizon of operation. If the parameter represents 
a technological quantity (i.e., a dimension subject to manufacturing uncertainty), then the range may be 
selected to cover the range of uncertainty expected (i.e., two or three standard deviations around its mean 
value). If the parameter represents a physical quantity (e.g., thermal conductivity, subject to a general 
aleatory or epistemic uncertainty), then the associated parameter probability density function is to be 
specified to sample the random parameter values in Step 3. If the parameters are measured experimentally 
in a manner that introduces correlations between their uncertainties (e.g., nuclear cross-sections), then the 
covariance matrix describing their uncertainties must be used to constraint their sampled values. 
Similarly, if the parameters are calculated from an upstream physics model, correlations between their 
variations are expected, and must be specified to ensure that the samples generated in Step 3 are 
consistent with the upstream physics model. 

The y realizations in Step 4 may be generated directly using the model function, i.e., ( )i iy f x= . If 
the function f is too expensive to evaluate, other approximate approaches may be used. For example, a 
lower fidelity model may be used (e.g., a diffusion model in lieu of a transport model, a deterministic in 
lieu of a probabilistic model). If y is obtained iteratively, the pre-converged values of y be used.29 If y is 
too expensive to evaluate over the entire problem domain, the model may be restricted to a sub-domain 
(e.g., evaluate pin power distribution over a single fuel assembly vs. whole core).30 While all these 
approaches introduce additional errors resulting in an increase in the size of the active subspace, it can be 
shown that the associated reduction errors can still be upper-bounded as described earlier. 

Note that in Step 3 two sets of random samples are generated. The first set contains l samples which 
are used for the construction of the active subspace, referred to as the snapshots set. The second set 
contains ls samples which are used solely for calculating an upper-bound on the active subspace in Step 7. 
This set is referred to as the oversamples set. It is important to distinguish between these two sets, 
because as mentioned earlier, the realizations used for the construction of the active subspace (i.e., the 
snapshots set), could be generated using an approximate model for the function f. However, the 
oversamples set must be calculated using the original function f to ensure reliable determination of the 
upper-bound. Secondly, the size of the snapshots set needs to be at least as big as the size of the sought 
active subspace; however the oversamples set may be set to a fixed value (typically less than 10), which 
are used to specify a probabilistic confidence in the estimation of the error upper-bound. Also note that if 
the snapshots set is too small to meet the user-defined tolerance on the reduction errors (Step 8), 
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additional snapshots must be added, however the oversamples set need not be re-evaluated or expanded, 
as it can be used to test multiple active subspaces. 

Step 5 is particularly required when the components of the response y are of different units and/or 
scales. For example if y contains outputs from a typical core simulator such as the critical eigenvalue, pin 
powers, and the fuel isotopic composition, it is important to standardize y by centering it around and/or 
dividing it by the mean values of the samples. This is also important because the user-defined tolerances 
for the different components of the response vectors are expected to be different. For example, one desires 
to calculate the multiplication factor to five significant digits, while the power is acceptable to only 
three significant digits. The standardization process may be described as follows: 

Yc =W Y−Y0( )∈ !ny×l  (14) 

where 0Y  is a matrix with l identical columns [ ]0 0*i y=Y , representing reference values for the 
responses, and W is a diagonal matrix used to convert the variations in relative values with appropriate 
weights reflecting their desired tolerances, i.e., [ ]0/ii i iyτ=W  , where [ ]0 iy  is the ith component of the 

y0 vector, and iτ  is an additional weight. For example, if the ith and jth responses are desired to di and dj 
significant digits, respectively, then the weights may be selected as: 

( )10log / /i j j id dτ τ =
  . (15) 

The same standardization process may be applied to Ys containing the oversamples set. 

In Step 6, an orthonormal basis for the active subspace is calculated. This may be done using any 
rank-revealing decomposition such as the singular value decomposition (SVD) or the Gram-Schmidt QR 
factorization, or any of their numerous variations.31 This process generates a matrix yQ  with ry columns. 
The premise is that this matrix can be used to reconstruct the model response realizations for any input 
parameter xx S∈  such that the discrepancies between the original model responses and the reconstructed 

responses are upper-bounded by the user-defined bound yε . 

This may be written as follows: 

( ) ( )T
y yf x ε− ≤I QQ

 (16) 

where Q y
T f (x)∈ !ry  represents the ry components of the response along the active subspace (referred to 

as the responses active DoFs), and Q yQ y
T f (x)∈ !ny  is the re-constructed response vector in the 

response space. Note that the vector ( )T
y y f xQ Q  has ny components just like the original response vector 

f(x). However, the variations of these ny components is restricted to an ry active subspace. Figure 16 
depicts this situation for a 3D response space, and a 2D active subspace (representing a hyperplane). 
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Figure 16: Active Subspace Reconstruction Error  

The error upper-bound yε  is calculated in Step 8 as follows: 

( )[ ]*1,...,

210 max T
y y y s ii s
ε

π =
= −I Q Q Y  such that ( )( ) 10 s

y yp e x ε −≥ =  (17) 

where [ ]*s iY  is the ith column of the matrix sY  and ( )ye x  is the error for any given x as defined in 
Equation (14). 

This upper-bound is met in a probabilistic fashion, implying that there is a probability of 10-s (s the 
size of the oversamples set) that the actual error ( )ye x  will exceed the bound yε  for some parameter 
value x that belongs to the allowable range of parameter variations Sx. This probability is denoted as the 
failure probability (i.e., denoting the failure of the active subspace to upper-bound the errors resulting 
from the reduction). To implement this formula, the rank of the active subspace is increased progressively 
until the error tolerance is satisfied. The interested reader may find a proof for this upper-bound for linear 
operators in Reference 21, and its extension to smooth nonlinear operators in a multi-physics setting in 
Reference 25. 

If the calculated upper-bound does not meet the preset user tolerance using the entire snapshots set, 
the size of the snapshots set must be increased by adding more model realizations. There is no general 
methodology for figuring out how many additional realizations should be added. However, some 
preliminary analysis of the error bound decline with the number of realizations could be used to estimate 
the rate of error reduction, which can provide a first order estimate of the required additional model 
realizations.32 

To test the upper-bound generated by the RFA algorithm, a verification algorithm is applied: 

1. Given specified preset tolerance yε  assumed to be satisfied by an active subspace yQ , and a 

failure probability 10 sp −= . 

2. Generate lv random samples for x, i.e., { } 1
vl

i xix S
=
∈ . 

3. Calculate realizations using original model ( ){ } 1

vl
i i i
y f x

=
= . 
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4. Form the standardized version of the verification matrix Yv = y1 y2 ... ylv
!
"#

$
%&
∈ !ny×lv . 

5. Calculate the maximum errors for the verification set ( )[ ]{ }* 1

vlT
i y y v i i
δ

=
= −I Q Q Y . 

6. Calculate the fraction pf of the verification set samples whose errors exceed yε . 

7. If fp p≤ , the verification test is positive. 

In practice s (size of the oversamples set) is typically selected to render a very small failure 
probability p (i.e., 10-6 to 10-10), which can only be observed numerically with large number of samples. 
Therefore, it is recommended to use a small number s to complete this test.23 

Another utility of this test is that it allows one to generate an independent correlation between the size 
of the active subspace and the maximum error resulting from the reduction. This same correlation could 
be generated using the snapshots set, but for verification purposes, we employ the verification set since it 
is independent of the choice of the active subspace. 

3.3 Range Finding Algorithms for Multi-Physics Models 
We now turn to extending the RFA algorithm to a multi-physics model. The basic idea is to perform a 

dimensionality reduction at each model-to-model interface. Instead of presenting an abstract framework 
for a general multi-physics model, we elect to demonstrate the RFA algorithm to a specific multi-physics 
model that is currently being developed at INL, the RattleSnake-BISON coupled codes system under 
MAMMOTH.19 This coupling employs RattleSnake to solve for the neutron field to calculate the power 
distribution, fission rate density, and accumulated fuel burnup that are fed as input to BISON to update 
the temperature field, which is then used in conjunction with burnup to update the macroscopic cross-
sections for RattleSnake. The physics components comprising this coupling are depicted in Figure 17. 

 
Figure 17. Multi-Physics MAMMOTH-based Model of RattleSnake and BISON. 

In principle one can apply the RFA to each of these models to identify the degree of reduction that is 
inherent in each of the physics models. This knowledge could be used in a straightforward manner to 
construct a surrogate model for the respective physics models. This approach while simple to implement, 
it ignores the fact that effective DoFs associated with a given physics model may not be important to the 
other physics models. This implies that one would be constructing surrogate models that capture 
variations that may not be important to the overall model. Therefore, we adopt another approach in which 
the effective DoFs common to all physics models are first determined then employed to construct 
surrogates for the individual models. This approach has been shown in earlier work to be more effective 
as it identifies a smaller number of effective degrees of freedom, and hence is expected to be more 
computationally advantageous28. 
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The above multi-physics model is mathematically described as follows: 

[ ] ( ), , TRB F P f= Σ , 
( ), ,THT f B F P= , 

Σ = f XS T ,B( )  (18) 

where the subscripts TR, TH, and XS denote transport, thermal, and cross-section models, respectively. As 
described earlier, we will attempt to identify the minimum DoFs that influence the overall model. To 
achieve that, we need to develop notations that distinguish between different types of reductions 
introduced at each interface. In particular, we would like to distinguish between the reduction rendered by 
a single physics model, and the combined reduction of the physics model and its associated input 
parameters. In the first type of reduction, the RFA algorithm is applied by randomly sampling the 
parameter values over the entire parameter space, while in the second type of reduction, the parameters 
are sampled over an active subspace that is determined via reduction of the upstream physics model. 
Consider for example the thermal model, the following reduced outputs are identified as follows: ( )rT , 
( )
( )
r
PT , ( )

( , )
r
P FT , and ( )

( , , , )
r
P F BT Σ . The ( )rT  implies that only the thermal physics model is used to reduce the 

dimensionality of the temperature distribution. This is achieved by sampling all the input parameters to 
the thermal model over their entire respective spaces. The ( )

( )
r
PT  implies that the sampled power values are 

confined to an active subspace, that is calculated by the transport model. In this case, the reduction 
rendered for the temperature distribution is due to both the thermal model and the input power 
distribution. Similarly, ( )

( , , , )
r
P F BT Σ  implies that the cross-sections are sampled over their corresponding 

active subspace, which subsequently generates a reduction for the fission rate, burnup, and power 
distributions, which are also used to confine their sampled values when applying the RFA to the thermal 
physics model. The idea of these multiple reductions is to identify the minimum number of degrees of 
freedom that are common to the overall multi-physics model. It is expected that the effective 
dimensionality of these various reductions to respect the following formula: 

( ) ( ) ( )( ) ( ) ( )
( , , , ) ( )DOF DOF DOFr r r
P F B PT T TΣ ≤ ≤

 (19) 

where DOF  denotes the effective number of degrees of freedom that describe the variation of the 
reduced variables. Mathematically, this is equal to the effective rank of the matrix projection operator 
used to defined the reduced variables, i.e., ( ) ( )( )DOF r

TT rank= K , where TK  is defined in the sense 

of Equation (3) as ( )r
TT T= K . 

Ultimately, we should attempt to find the minimum number of degrees of freedom at each model-to-
model interface to minimize the computational cost required to construct the surrogate model. Given the 
novelty of these proposed algorithms, we propose for implementation an explorative approach in which 
different levels of reductions are introduced to help the analysts develop their own insight into the 
mechanics of reduction algorithms. At the end, the best reduction for each model-to-model interface is 
identified, and denoted herein as: ( )

(0)
rX  , where X denotes the variable being reduced, and (0) denotes the 

best reduction. 

Once identified, a surrogate model based on the reduced variables for each physics is constructed as 
follows: 

BSUR ,FSUR ,PSUR!
"

#
$=
!fTR Σ(0)

(r )( )
, 



 

25 

T SUR = !fTH B(0)
(r ) ,F(0)

(r ) ,P(0)
(r )( )

, 
ΣSUR = !f XS T(0)

(r ) ,B(0)
(r )( )

 (20) 

The tilde denotes that the function is parametrically selected with unknown coefficients that are to be 
determined using training samples from the original models. 

We now discuss the extension of the basic RFA algorithm to a multi-physics model, with the 
presentation customized here for the transport-thermal multi-physics model depicted in Figure 17. 

1. Generate NXS random realizations for the burnup and temperature distributions, { } 1
, XSN
i i iB T

=
 , and 

calculate corresponding macroscopic cross-sections, ( ),i XS i if B TΣ = . 

2. Calculate cross-section active subspace, QXS = QXS
!" #$*1 .... QXS

!" #$*rXS

!

"
#

$

%
&∈ !

nXS×rXS . 

3. Calculate ( )r
i XS iΣ = ΣK . The operator KXS is defined below. 

4. Execute the transport model, [ ] ( )( ), , r
i i i TR iB F P f= Σ  

5. Calculate transport model output active subspace, QTR = QTR
!" #$*1 .... QTR

!" #$*rTR

!

"
#

$

%
&∈ !

nTR×rTR  

6. Calculate [ ]( ) ( ) ( ), , , ,r r r
i i i TR i i iB F P B F P⎡ ⎤ =⎣ ⎦ K

. 

7. Execute the thermal model, ( )( ) ( ) ( ), ,r r r
i TH i i iT f B F P=  

8. Calculate thermal model output active subspace, QTH = QTH
!" #$*1 .... QTH

!" #$*rTH

!

"
#

$

%
&∈ !

nTH×rTH  

9. Calculate 
( )r
i TH iT T= K . 

To gain insight into the reduction rendered by each physics model, the K operators (defined in 
steps 3, 6, and 9) at each model-to-model interface may be selected in three different manners. First, K is 
selected as the identity matrix implying that the randomized output realizations are passed directly to the 
next model without any reduction. This is equivalent to treating the combined physics models as one 
black box. This approach serves to identify the DoFs that affect the overall model. In practice however, 
this is not an efficient approach as the number of active DoFs may vary significantly from one physics 
model to the next. Therefore, it is important to perform some reduction at each model-to-model interface. 
This can be done by choosing K to be the projection operator calculated by the RFA, as described in 
Equation (4). This allows one to constraint the variations of the input parameters of a given physics model 
to the active subspace determined by the upstream physics model. To ensure that the active DoFs are 
equally excited by the RFA at each model-to-model interface, one can re-generate randomized samples 
for the downstream physics model, but now constrained to the active subspace determined by the 
upstream physics model. This can be done by selecting the perturbations as follows: 
( ) ( )

DOF,
r r
i z iz z=Q   . (21) 
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Applied to the cross-section interface, this becomes: 
( ) ( )

DOF
r r

XSΣ = ΣQ   
( ) ( ) ( ) ( ) ( ) ( ), , , ,r r r r r r

TR DOF DOF DOFB F P B F P⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦Q   . (22) 

Upon initial implementation of an RFA to a multi-physics model, it is recommended that these 
various selections for the K operators are performed to gain insight into the mechanics of the reduction as 
it applies to the particular physics application. 

3.4 Surrogate Model Construction 
Following the identification of the optimum active subspace at each model-to-model interface, any 

number of surrogate construction methodologies may be used, but now functionalized in terms of the 
active DoFs only. With the surrogates constructed in terms of the DoFs, transformation to the original 
spaces is straightforward using the K projection operators. Since the focus of this report is not on the 
exploration of different surrogate construction methodologies, we limit our discussion to a simple 
polynomial-type surrogate model. In future work, other forms of surrogate models will be investigated. 

To determine the degree of the polynomial most adequate for each of the physics model, we employ 
an explorative approach in which the each of the physics models behavior (as measured in terms of its 
respective output active DoFs) is explored over randomized directions in its input active subspace. The 
algorithm below describes this process with demonstration to the transport model only. Application to 
other models is straightforward. 

1. Let the input active DoFs of the cross-section space be given by: ( )r
DOFΣ  

2. DO 1,...,I Nβ=  

3. Generate a random direction in the cross-section active subspace ( ) ( )r r
XS DOFΣ = ΣQ  

4. Generate Nα  random points along the direction { }( ) ( )

1

Nr r
i i XS DOF i

αα
=

Σ = ΣQ . 

5. Execute the original transport model to calculate the responses [ ]{ } 1
, ,

N
i i i i
B F P α

=
 

6. Calculate the active DoFs for the responses, [ ]{ }( ) ( ) ( )
, , , 1
, , , ,

Nr r r
DOF i DOF i DOF i TR i i i i
B F P B F P α

=
⎡ ⎤ =⎣ ⎦ Q  

7. Plot each of the output active DoFs vs. the input active DoFs to determine trend 

8. END DO I 

This algorithm involves a loop, wherein a new random direction is generated in each iteration, and the 
function behavior is explored over that direction. One could plot the behavior of the responses of interest 
directly vs. the input active DoFs, which provides a visual aid describing the behavior of the physical 
quantities of interest. However, from a mathematical viewpoint, it is important to plot the behavior of the 
output DoFs since they are used as the basis for the surrogate model predictions. For example, if the 
output DoFs vary linearly with the input DoFs, then one has the assurance that any response of interest 
will also vary linearly with the input variations. The opposite however is not necessarily true. The loop 
repeats this process Nβ times, i.e., generating Nβ random directions in the input active subspace, to ensure a 
proper coverage of the space. If certain directions are associated with higher orders of nonlinearity, the 
proposed approach can detect these directions, which allows the user to increase the order of nonlinearity 
to capture model behavior for any possible parameter variation. 
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3.5 Numerical Results 
The numerical experiment employs a 2D quarter pellet modeled by MAMMOTH19 with the model 

parameters shown in Table 1. The numerical mesh used is described by 1667 finite elements and 4601 
nodes values. The geometry and meshes are shown in Figure 17, which are generated by ParaView. 
Figure 17 (a) and (b) are the fine meshes employed, respectively, for the neutronics calculation in 
RattleSnake and the fuel performance calculation in BISON. Over the radial direction, the quarter pellet is 
divided into 23 radial rings, each with uniform material properties. The inner 20 rings represent the fuel 
materials, the 21st ring describes the gap, the 22nd ring for the cladding, and the 23rd region contains the 
water coolant/moderator. In this model, RattleSnake and BISON share the same mesh in fuel pellet part 
(i.e., fuel, gap, and cladding). The most outer part in RattleSnake mesh is water, which should be 
considered in neutronics calculation. 

Table 1. Initial fuel pin parameters. 
Parameter Initial Value 
Fuel Pin Radius 4.09575 (mm) 
Gap Thickness 0.08255 (mm) 
Outer Cladding Thickness 0.5715 (mm) 
Pitch 12.5984 (mm) 
Fuel Temperature 622 (K) 

 
Power density, fission rate and burnup distributions, defined over the finite element mesh represent 

the output from RattleSnake, which are subsequently fed into BISON to calculate the temperature 
distribution over the nodes. The calculations are completed over 350 full power days with the reference 
results shown in Figure 19. 

  
(a) RATTLESNAKE Mesh (b) BISON Mesh 

Figure 18. Numerical meshes employed by RattleSnake and BISON. 
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(a) Power Density Distribution (b) Fission Rate Distribution 

  

(c) Burnup Distribution  (d) Temperature Distribution 

Figure 19. RattleSnake-BISON output distributions. 

We now discuss the application of the RFA to the coupled calculations. Three different reduction 
scenarios are attempted to gain insight into the reducibility of the individual physics models of 
RattleSnake and BISON. Table 2 lists these different scenarios. 
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Table 2. Reduction scenarios. 
Interface Scenario 1 Scenario 2 Scenario 3 
Cross-section No, Σ  Yes, ( )rΣ  Yes, ( )rΣ  
Power Density Yes, ( )rP  Yes, ( )

( )
rPΣ  Yes, ( )

( )
rPΣ  

Fission Rate No, ( )rF  No, ( )
( )
rF Σ  Yes, ( )

( )
rF Σ  

Burnup No, ( )rB  No, ( )
( )
rB Σ  Yes, ( )

( )
rB Σ  

Temperature Yes, ( )
( )
r
PT  Yes, ( )

( , )
r
PT Σ  Yes, ( )

( , , , )
r
B F PT Σ  

 
In the first scenario, no reduction is applied at the cross-section interface prior to the application of 

RFA to RattleSnake. The snapshots collected are used to reduce the power densities that are then 
subsequently used to generate random realizations for the BISON model. In doing so, the fission rate and 
burnup distribution are kept at their reference values. In the second scenario, the cross-section interface is 
reduced and the associated active subspace is used to constrain the random samples of the cross-sections. 
The third scenario repeats the second scenario but adds the reduction of the fission rate and burnup 
distribution. 

The notations in the table are selected such as ‘No’ implies no reduction, while ‘Yes’ implies a 
reduction is rendered. The reductions applied are all reflected in the subscripts. For example, in 
scenario 2, the subscripts of the temperature distribution imply that both the cross-sections and power 
density interfaces were reduced with their associated active subspaces used to constrain the samples used 
in the RFA application. 

In the first scenario, all cross-sections, corresponding to all material and reaction types, i.e., total, 
capture, fission, removal, absorption, nu-fission and kappa-fission cross-sections, for the 20 different 
material types available, are randomly perturbed within 5%. Snapshots of the power density, fission rate, 
and burnup distributions are collected, and their dimensionality is assessed using RFA. 

All output distributions from RattleSnake are evaluated over the finite element mesh, containing 1667 
elements. This means that the snapshot matrix YTR combining all distributions has dimensions of 
nTR=1667x3 representing the number of rows, and l=7500 columns. The 7500 represent 500 snapshots 
(corresponding to 500 perturbations) collected over 15 depletion steps. By collecting the snapshots over 
the range of depletion one ensures that the reducibility is representative of the entire range of depletion 
expected during normal model execution. For the temperature distribution calculated by BISON, a matrix 

4601 70000
TH

×∈Y R of 200 snapshots (corresponding to 200 perturbations) is generated over the entire range 
of depletion, where the number of rows represent the number of nodes at which the temperature is 
calculated and the columns represent 200 perturbations, each containing 350 time steps. 

The corresponding active subspace is calculated using SVD, and the associated column space of the 
active subspace is described by a matrix QTR . This matrix corresponds to the left singular vectors of the 
SVD. To determine an appropriate rank for the active subspace, an estimate for the rank is gradually 
increased from 1 to 50, and in each time, the maximum relative error (error in the RattleSnake output 
distributions) is calculated according to Equation (11). The results are shown in Figure 20. These graphs 
allow one determine an appropriate rank that meets user-defined tolerances on all output distributions. Let 
this appropriate rank be given by rTR. 
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The implication is that the first rTR columns of QTR, i.e., 

QTR
!" #$*1 .... QTR

!" #$*rTR

!

"
%

#

$
&∈ !

nTR×rTR

 (23) 

can be used to bound the reconstruction errors for all output distributions to the tolerances defined by the 
user in the probabilistic sense of Equation (17). For example, considering only the power density with no 
cross-section reduction (first scenario), Figure 20 (b), and assuming a user-defined tolerance of 0.01%, 
one needs a rank of at least 30 to bound the reconstruction error to 0.01% with extremely high probability. 
A value of s=10 (in the sense of Equation (17) is used in this case, implying a failure probability of 10-10. 

The implication here is that despite that the power density in described over a spatial mesh of 
1667 values and 15 in the temporal space, there are only 30 degrees of freedom that describes its variation 
in the combined space-time phase space. 

In the second scenario, the cross-sections are reduced via an SVD decomposition applied on the raw 
cross-section data that are functionalized in terms of burnup, temperature, and material, and reaction 
types. The snapshot matrix is formulated such as each burnup value and temperature value and material 
type represents a new snapshot for the given cross-section. This follows because the cross-sections 
corresponding to different materials, and different compositions, and Doppler feedback are expected to be 
highly correlated. The results of this SVD are shown in Figure 20(a). 

A rank of 20 corresponding to a maximum tolerance of approximately 0.01% for the cross-section 
reconstruction is assumed in the generation of the subsequent samples for RattleSnake. These samples are 
generated by constraining the cross-section randomized samples to the associated active subspace, 

described by QXS
!" #$*1 .... QXS

!" #$*20
!
"%

#
$&
∈ !nXS×20 . The RFA is then used to execute RattleSnake 200 

times to collect the power density, fission rate, and burnup snapshots. 

The graphs on the right in Figure 21and Figure 22 are for the second scenario, while the left graphs 
describe the results of the first scenario. Note that in both scenarios, BISON is executed with randomized 
samples over the power density only, with the fission rate and burnup held constant at their reference 
values. Mathematically, this is described as follows: 

Pi
(r ) =QPQP

T Pi  (24) 

where Pi are the RFA randomized samples over the entire phase space of the power, and T
P PQ Q  is a 

projection operator on the active subspace of the power density. 

By limiting the RFA application to the power density only, we are able via the third scenario to 
explore whether the fission rate and burnup will introduce additional degrees of freedom in the 
temperature distribution. This follows because in the third scenario, all RattleSnake outputs are reduced 
and their associated active subspaces are used to constrain the RFA samples for BISON. Mathematically, 
this is described as follows: 

Bi
(r ) ,Fi

(r ) ,Pi
(r )!

"
#
$=KTR Bi ,Fi ,Pi!" #$  (25) 

where KTR =QTRQTR
T . 
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(a) Error vs. Rank of Cross-Section Tables 

  

(b) Power Density (c) Power Density (w/ XS Reduction) 

Figure 20. Maximum relative reduction error vs. size of active subspace for Scenarios 1 (b), 2 (c), and for 
the cross section active subspace (a). 
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(d) Fission Rate (e) Fission Rate (w/ XS Reduction) 

  
(f) Burnup (g) Burnup (w/ XS Reduction) 

Figure 21. Maximum relative reduction error vs. Size of active subspace for fission rate and burnup (on 
the left Case 1, on the right Case 2). 
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(h) Temperature (i) Temperature (w/ XS Reduction) 

Figure 22. Maximum relative reduction error vs. size of active subspace for temperature (on the left Case 
1, on the right Case 2). 

A quick glance over the graphs in Figure 20-Figure 22 shows that one can consistently get a smaller 
active subspace in the second scenario when compared to the reduction results of the first scenario. For 
example, the power density needs an active subspace of size 30 to achieve an error tolerance of 10-3 in the 
first scenario, which drops by order of magnitude to only 3 with cross-section reduction. Notice that at 
rank 4, Figure 20(c), the error drops below 10-3. Similar behavior may be observed for the fission rate and 
burnup distributions. The temperature distribution shows only a slight reduction in the size of the active 
subspace going from rank 8 to rank 6 for an error tolerance of 10-3. This indicates that the majority of the 
reduction is taking place in the cross-section space, and the neutronics calculations. Also, notice that in 
the second scenarios, the temperature rank is about 6, while the power density is only 3. This implies the 
fission rate and burnup distributions have introduced additional degrees of freedom. Note that while the 
fission rate is expected to be highly correlated with the power density, since the only difference is the 
energy released per fission. This energy however is isotope dependent with a range of variation of 
approximately 5 to 10%. Therefore, if one requires a tight tolerance on the reduction results, one should 
expect additional DoFs to be introduced to capture this range of variations for the isotope-dependent 
fission energy release. 

Finally, in the third scenario, all interface variables calculated by RattleSnake are included in the RFA 
application. This implies the active subspace is calculated for all three variables combined, which may be 
achieved by simply stacking the snapshots matrix for each variable in one bigger matrix. 

YTR =

B1 ... BNS
F1 ... FNS
P1 ... PNS

!

"

#
#
#
#
#

$

%

&
&
&
&
&

∈ !5301×7500  (26) 

Notice that the number of rows here is simply 3 times the number of finite element meshes, since all 
three variables are defined on the same finite element mesh. The active subspace corresponding to this 
bigger matrix is calculated and used to re-evaluate the error as a function of the size of the active 
subspace. The results are shown in Figure 23. 
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(a) Power Density ( )

( )
rPΣ  (b) Fission Rate ( )

( )
rF Σ  

  
(c) Burnup ( )

( )
rB Σ  (d) Temperature ( )

( , , , )
r
B F PT Σ  

Figure 23. Maximum relative reduction error vs. size of active subspace (Case 3). 

Comparison of the graphs in Figure 23 to the right graphs in Figure 20 through Figure 22 show a 
slight increase in the size of the active subspace for the power density and fission rate is noticed. This is 
due to the reason given before regarding the slight variations in the isotope-dependent energy release per 
fission. It is also noticed that the burnup has only rank 2. Finally, the temperature distribution has a rank 
of 2 for an error tolerance of 10-3 and rank 1 for tolerance of 10-2. This indicates that the temperature 
distribution variations over the range of depletion is highly correlated with the total energy production. 
This follows since the temperature variations are controlled by thermal parameters such as the thermal 
conductivity, heat capacity, etc., which are functions of the amount of radiation damage inflicted on the 
fuel, which is a function of accumulated energy deposited in the fuel over the irradiation horizon. 

The final task of this part of the project is to construct a surrogate model for the coupled RattleSnake-
BISON models. We achieve that by functionalizing the surrogate model in terms of the active DoFs of the 
various interfaces. We recognize that a plethora of algorithms exist in the literature for the construction of 
surrogate models. We will focus here on a simple polynomial fitting function as the main goal here is to 
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demonstrate that significant reduction in the cost of the surrogate model could be achieved via a priori 
dimensionality reductions of the model interfaces. Future work could be invested to determine the 
optimum surrogate model format. 

To determine the degree of the polynomial needed, we perform a parametric study to explore the 
expected variations of the model responses with respect to the active DoFs. We assume a surrogate model 
of the form: 

T SUR = !f Σ( )  (27) 

which implies for a given cross-section variations, one can determine the corresponding temperature 
distribution over space and time. This surrogate is composed of four sub-surrogate models, described as 
follows: 

( )SUR r SUR
TH DOFT T= K  , 

TDOF
(r )SUR = !fTH BDOF

(r )SUR ,FDOF
(r )SUR ,PDOF

(r )SUR( ) , and 

BDOF
(r )SUR ,FDOF

(r )SUR ,PDOF
(r )SUR!

"
#
$=
!fTR ΣDOF

(r )( )  

( )r T
DOF XSΣ = ΣQ  (28) 

Taken from the bottom up, the active subspace of the cross-sections is used to project the user-defined 
cross-section variations (which could have as many as nXS DoFs) onto a subspace with rXS DoF( i.e., 
ΣDOF
(r ) ∈ !rXS ). The ( )r

DOFΣ  DoFs are subsequently used to calculate via the surrogate function !fTR  the 
corresponding variations in the DoFs of the fission rate, burnup, and power density variations. These 
variations are then used to calculate the variations in the DoFs of the temperature distribution ( )r SUR

DOFT  via 

the surrogate function !fTH . Finally, the projection operator THK is used to map the variations in the 
temperature DoFs to the full phase space of the temperature distribution. 

An important part of the surrogate construction is to explore the appropriate shape for the functions 
!fTH  and !fTR  that is needed to capture the real variations of the BISON and RattleSnake models. Since 

these functions relates active DoFs, we execute the codes by perturbing their DoFs using a conventional 
parametric approach, wherein one parameter, i.e., one active DoF, is perturbed as a time, and the model 
behavior is visually inspected to determine the best polynomial function. Figure 24 shows one typical 
result showing the dependence of the most dominant temperature active DoF on the most three dominant 
DoFs of the power density. Similar results can be obtained for the other DoFs of the temperature 
distribution and the fission rate and burnup density. These results indicate that a linear trend is acceptable 
for this multi-physics model. The implication is that the surrogate functions could be described using 
matrix operators. Therefore, the final surrogate model may be described by a single matrix operator of the 
form: 

( )SUR SUR
ref refT T− = Σ−ΣF

 (29) 

where ref denotes some reference conditions, and FSUR lives in !nTH×nXS  phase space but has only rank r 
(assumed to be the optimum rank for the overall multi-physics model), and can be written as: 
SUR T

TH XS=F Q RQ , (30) 
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and QTH ∈ !
nTH×r , QXS ∈ !

nXS×r , and R ∈ !r×r . As discussed earlier, both the Q matrices are 
calculated from the initial dimensionality reduction process, implying that the surrogate construction 
involves only the construction of a small r x r square matrix, which may be obtained via least squares. For 
this study, a value of r = 2 is selected to keep the error tolerance for the temperature distribution below 
10-3. Given the linearity of the surrogate model, a rank of 2 implies that the temperature distribution have 
only two modes of variations, i.e., active DoFs. Similarly, the other model interfaces, i.e., power density, 
fission rate, burnup, and cross-section have two active DoFs that control the two modes of temperature 
variations, which are readily calculated from the RFA results. For example, Figure 25 shows the first two 
dominant modes for the power density. 

 
( )
( , )
r
P DOFT Σ  vs. ( )

( )
r
DOFPΣ  

Figure 24. Relationship between the DoFs of RattleSnake and BISON. 

  

Figure 25. First two DoFs of power density. 
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4. META-MODEL IMPLEMENTATION IN RAVEN FRAMEWORK 
4.1 Introduction 

RAVEN is currently able to construct multi-targets reduced order models10, which are aimed to 
represent the response of a system (in a fixed configuration) for multiple figures of merit and time-
dependent ROMs33. These capabilities represent the initial steps for a larger implementation about the 
interaction of multiple models. In fact, in several cases, multiple models need to interface with each other 
since the initial conditions of one are dependent on the outcomes of another. 

To better understand the problem that here is solved, it is useful to consider two simple examples: 

1. The following problem is considered: a weather forecast simulation code “a” is used to compute the 
external (i.e., ambient) temperature in a certain location. A second model “b” is inquired to 
compute the average temperature in a room having as boundary condition, among several others, 
the external ambient temperature. The response of the model “b” depends on the outcome of the 
model “a.” 

2. Two different simulation codes are considered: (a) a code that is meant to compute the thermal 
conductivity of the ceramic uranium dioxide as function of the Temperature, and (b) a Thermal-
hydraulic code that is used to compute the Temperature field of a reactor, whose heat conduction 
depends on the thermal conductivity value. As easily inferable, the two models are mutual 
dependent, leading to a non-linear system of equations. 

The two reported examples are only aimed to illustrate the reason why the creation of a framework to 
make interact different models is a key development for the advancement of RAVEN as a comprehensive 
calculation flow driver. Before reporting how the meta-models have been implemented, it is necessary to 
briefly describe the representative Model “entities” that are available in RAVEN. 

4.2 Models in RAVEN 
The Model entity, in the RAVEN environment, represents a “connection pipeline” between the input 

and the output space. The RAVEN framework does not own any physical model (i.e., it does not posses 
the equations needed to simulate a generic system), but implements Application Programming Interfaces 
by which any generic model can be integrated and interrogated. In the RAVEN framework four different 
model categories (entities) are defined: 

• Codes 

• Externals 

• ROMs 

• Post-Processors. 

The Code model represents the interface object that establishes the communication pipe between 
RAVEN and any driven code. Currently, RAVEN has Application Programming Interfaces for several 
different codes: 

• RELAP5-3D, the most widely used Safety Code (thermal-hydraulic) 

• RELAP-7, safety code eventual future replacement of RELAP5-3D code 

• Any MOOSE-based application 

• SAS4A/SASSYS-1, safety analysis code for fast reactors (Argonne) 

• Modelica, object-oriented, declarative, multi-domain modeling language for component-oriented 
modeling of complex systems 
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• MELCOR, engineering-level computer code that models the progression of severe accidents in 
light-water reactor nuclear power plants (coupling under development by the University of Rome “La 
Sapienza”) 

• MCNP, general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron, 
or coupled neutron/photon/electron transport (under development). 

The data exchange between RAVEN and the driven code can be performed either by direct software 
interface or by files. If the system code is parallelized, the data exchanging by files is generally the way to 
follow since it can be much more optimized in large clusters. 

The External model allows the user to create, in a Python file (imported, at run-time, in the RAVEN 
framework), its own model (e.g., set of equations representing a physical model, connection to another 
code, control logic, etc.). This model will be interpreted/used by the framework and, at run-time, will 
become part of RAVEN itself. 

The ROM represents an Application Programming Interface to several different algorithms. A ROM 
is a mathematical representation of a system, used to predict a selected output space of a physical system. 
The creation and sub-sequential usage of a ROM involves a procedure named “training.” The “training” is 
a process that uses sampling of the physical model to improve the prediction capability (capability to 
predict the status of the system given a realization of the input space) of the ROM. More specifically, in 
RAVEN the ROM is trained to emulate a high fidelity numerical representation (system codes) of the 
physical system. 

The post-processor model is aimed to manipulate the data generated, for example, employing a 
sampling strategy. In RAVEN several different post-processors are available: (1) statistics post-processor, 
aimed to compute all the statistical figure of merits (e.g., expected values, variance, skewness, covariance 
matrix, sensitivity coefficients, etc.); (2) reliability surface, which computes the Limit Surface, inquiring a 
goal function (i.e., a function that determines if a certain coordinate in the input space led to a failure or 
success), and so many others. 

4.3 Meta-Model in RAVEN 
As already mentioned, in several cases multiple models need to interface with each other since the 

initial conditions of some are dependent on the outcomes of others. In order to face this problematic in the 
RAVEN framework, a new model category (e.g., class), named MetaModel, has been implemented. This 
class is able to assemble multiple models of other categories (i.e., code, external model, ROM), 
identifying the input/output connections, and, consequentially the order of execution and which sub-
models can be executed in parallel. 
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Figure 26. Example of a meta-model constituted by three sequential sub-models. 

Before analyzing in detail how the meta-model capability has been developed in the RAVEN 
framework, it is worth to report a couple of schematic cases that show how the input/output 
interconnections determine the order of execution of the sub-models. Figure 26 reports an example of a 
meta-model that is constituted by three sub-models (ROMs, codes, or external models). As it can be 
noticed: 

• Model 2 is connected with Model 1 through variable Θ (Model 1 output and Model 2 input) 

• Model 3 is connected with Model 2 through variable Π (Model 2 output and Model 3 input). 

In this case, the meta-model is going to drive the execution of all the sub-models in a serial sequence, 
because each model (except the Model 1) is dependent on one of the outcomes of the previously executed 
model. 

 
Figure 27. Example of a meta-model constituted by three sub-models, two of which can be run 
independently. 

In Figure 27, another example is reported. In this case, Model 2 and Model 3 depend on Model 1 only 
through the output variable Θ and they are not connected between each other. For this reason, the meta-
model executes Model 2 and Model 3 in parallel, after inquiring about Model 1. 
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4.3.1 Implementation 
Since modularity of the RAVEN framework, implementation of the meta-model entity has been 

straightforward. In RAVEN, all models’ outputs (e.g., whatever code output) are collected in internal 
containers (named DataObjects) that are aimed to store time-series and input/output data relations in a 
standardized fashion; in this way, the communication of the output information among different entities 
(i.e., models) can be completely agnostic with respect to the particular type of output generated by a 
model. The meta-model entity fully leverages this peculiarity in order to transfer the data from a model to 
the other(s). 

 
Figure 28. Meta-model data exchange among sub-models. 

Based on the input/output relations of each sub-model, the meta-model entity constructs the order of 
their execution and, consequentially, the links among the different entities. 

Figure 28 schematically shows the communication piping established by the meta-model entity. It can 
be noticed how the sub-models share information (inputs/outputs data) using the DataObjects entity as 
communication network. 

4.3.2 Meta-model Resolving in a Non-Linear System 
In several cases, the input of a model depends on the output of another model whose input is the 

output of the initial model. In this situation, the system of equation is non-linear and an iterative solution 
procedure needs to be employed. The meta-model entity in RAVEN is able to detect the non-linearity of 
the sub-models’ assembling and activate the non-linear solver: Picard’s iterative scheme. Because 
Picard’s iterative scheme is well known, there is no mean to report its implementation here. Figure 29 
shows an example of when the meta-model entity activates the Picard’s iteration scheme, which ends 
when the residue norm (between an iteration and the other) falls below a certain input-defined tolerance. 
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Figure 29. Meta-model resolving in a non-linear system of equations – Picard’s iterations. 

4.4 Application Example 
In order to test the newly developed capability, a simple one-dimensional heat conduction transient 

(in a slab of thickness L=1 m) has been employed. Two external models compose the meta-model: 

1. EM1: is aimed to solve the heat conduction partial differential equation: 
!"(!,!)
!"

= 𝑘 !
!!(!,!)
!!!

𝑇 0, 𝑡 = 𝑇!"#$
𝑇 𝐿, 𝑡 = 𝑇!"#!!

 (31) 

2. EM2: computes the thermal conductivity (input of EM1) as function of the average temperature in 
the slab, using the following correlation: 

𝑘 = !".!"
!"#.!!!

+ 6.077𝐸!!" ∗ 𝑇 (32) 

The transient is 10 seconds long and the initial temperature across the slab is set to 600 K. The 
so-constituted meta-model has been sampled through a grid strategy sampling the boundary conditions 
𝑇 0, 𝑡  and 𝑇 𝐿, 𝑡  with a uniform probability distribution between 500 and 1700 K. 

Two cases have been run in order to test the functionality of the meta-model when it resolves in a 
chain of evaluations and in a non-linear system: 

1. In the first test the model EM2 uses the sampled boundary conditions to calculate the average 
temperature and consequentially the thermal conductivity that is fed in the heat conduction model 
EM1. This approach resolves in a chain of evolutions as shown in Figure 30. 
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Figure 30. Heat conduction meta-model connections in a chain of evaluations. 

2. In the second test the model EM2 has as input the average temperature in the slab that is one of the 
outcomes of the model EM1. In addition, the model EM1 needs the output (thermal conductivity) of 
the model EM2 to compute the heat conduction problem. Therefore this scenario resolves in a non-
linear system of equations. This is shown in Figure 31. 

 
Figure 31. Heat conduction meta-model connections in a non-linear system. 

Figure 32 and Figure 33 show the outcomes of the meta-model sampling in the two cases. As it can 
be seen, the obtained results match perfectly. 

 
Figure 32. Temperature at mid-plane: sequential model (left) and Picard iteration (right). 
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Figure 33. Compute thermal conductivity: sequential model (left) and Picard iteration (right). 

4.5 Final Remarks 
In this portion of the report, a newly developed capability of the RAVEN code has been shown. 

Through the meta-model entity, RAVEN is able to combine multiple models (i.e., simulation codes and 
ROMs), constructing a pipe network in order to transfer information among them. The addition of the 
Picard’s iteration scheme lets the user solving combinations of models that resolve in non-linear systems. 

5. CONCLUSION 
This report highlights the following three major accomplishments: 

1. Testing and improving of the reliability surface searching algorithm in RAVEN 

2. Demonstration of the possibility to construct reduced order models for high fidelity multi-physics 
problems 

3. Testing of an initial infrastructure, inside the RAVEN code, for the coupling of multiple surrogate 
models 

Firstly the report explore the possibility to improve the greedy, reliability, surface-adaptive searching 
algorithm implemented in RAVEN by a lesser greedy, more robust searching algorithm. As expected, 
there is no a priori answer to this question; however, the performed tests are encouraging and less greedy 
algorithms have been tested and look promising. One of the option tested, the introduction of the 
topological analysis of the scoring function shows two benefits: one, it could be tuned to filter out 
artifacts present in the scoring function (e.g., tuning the persistence requirement for the scoring function 
extreme), and, two, in intrinsically stochastic systems, it allows a de-noising of the scoring function to 
avoid cases where the extreme is just a product of the statistical noise. In conjunction with the topological 
analysis of the scoring function, the introduction of a batching approach for selection of realization of the 
input space to be evaluated by the high-fidelity simulation has also been tested. This strategy is less 
greedy and, even though it might converge slower, it might represent a safer pattern with respect to the 
originally implemented approach in RAVEN. Currently, those options are undergoing RAVEN quality 
assurance approval and will be soon merged with the multi-grid acceleration10. 

Sections 3 and 4 laid the theoretical background and basic infrastructure for the next development 
period for the RAVEN code, which will allow even more challenging problems in reliability analysis to 
be addressed. 

Section 3 describes the feasibility of surrogate model construction, following an ensemble approach 
for coupling of multi-physics models, where the exact coupling involves communication of what is 
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referred to as high-density fields (e.g., temperature and power). Those fields could be characterized by 
billions of degrees of freedom; therefore, they not suitable for being represented by surrogate models. In 
reality, the nature tendency to diffusion in physical system makes the existence of such a large number of 
uncorrelated degrees of freedom unlikely. Perturbations of the input space, rather than exciting each 
degree of freedom separately, tend to move the system response without altering its fundamental shape. 
For this reason, as shown in Section 3, perturbations of the input space led to variation in the high-density 
field (i.e., output) that could be represented by a very small set of directions where the system response 
changes. When multiple physics are connected to one another, the reduction of the active number of 
degree of freedom could become even larger because multiple physics act as a sequential set of filter 
applied to the initial perturbation in the input space. 

This approach will make it possible to perform reliability analysis, starting from high-fidelity 
representation of complex systems. Those types of representations (e.g., RELAP-7 coupled to BISON and 
MAMMOTH) traditionally have a very expensive simulation cost that make them impossible because of 
thousands of simulations. Following the approach described in this report, it will be possible to create 
accurately-driven surrogate models for each single physics and coupling them a posteriori. This will allow 
a great computational saving and application of advanced reliability surface searching algorithms (similar 
to the one presented in Section 2). 

This new approach has a large impact on reliability analysis and on uncertainty quantification, risk 
analysis, system optimization, and model calibration. In general this is true , for any application that 
requires a large number of simulations of the same complex system under perturbation of the input 
parameters. This very important result creates the possibility of constructing surrogates, within RAVEN, 
for a high-fidelity, multi-physics representation of complex systems. 

Section 4 shows the early results for implementation of an ensemble approach for the coupling of 
surrogate models representing a multi-physics problem. While this is an initial implementation, the 
developed structure seems to support current needs and could be eventually extended in the future. This 
capability builds a complex system representation, even when the original models were not coupled, but 
just coupled their surrogate. Two applications are relevant for reliability analysis: (1) the possibility to 
build surrogate representation of a complex system, starting from libraries of surrogate models for each 
component, and (2) software implementation present during the first stage of surrogate model coupling 
when responses are high-density fields. 
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