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EXECUTIVE SUMMARY 
The RAVEN code is becoming a comprehensive tool to perform probabilistic 

risk assessment, uncertainty quantification, and verification and validation. The 
RAVEN code is being developed to support the risk-informed safety margin 
characterization pathway to provide an set of methodologies and algorithms for 
advanced risk analysis. 

The risk-informed safety margin characterization approach applies stochastic 
analysis tools to system simulator codes. The fundamental idea behind this 
coupling approach is to perturb (by employing sampling strategies) timing and 
sequencing of events, internal parameters of the system codes (i.e., uncertain 
parameters of the physics model), and initial conditions to estimate values ranges 
and associated probabilities of figures of merits of interest for engineering and 
safety (e.g., core damage probability). This approach applied to complex systems 
such as nuclear power plants requires performing a series of computationally 
expensive simulation runs. The large computational burden is caused by the large 
set of (uncertain) parameters characterizing those systems. Consequently, 
exploring the uncertain/parametric domain, with a good level of confidence, is 
generally not affordable, within the limited computational resources that are 
currently available. In addition, the recent tendency to develop newer tools, 
characterized by higher accuracy and needs for larger computational resources (if 
compared with the presently-used legacy codes that were developed decades 
ago), has made this issue even more compelling. To overcome these limitations, 
the strategy for exploration of the uncertain/parametric space needs to use, at 
best, resources focusing the computational effort in those regions of the 
uncertain/parametric space that are “interesting” (e.g., risk-significant regions of 
the input space) with respect to the targeted figures of merit (for example, the 
failure of the system, subject of the analysis). These methodologies are named, in 
the RAVEN environment, adaptive sampling strategies. These methodologies 
infer the overall system response from surrogate models, constructed from 
already existing samples (produced using high-fidelity simulations), and suggest 
the most relevant location (coordinate in the input space) of the next sampling 
point to be explored in the uncertain/parametric domain. When using those 
methodologies, it is possible to understand features of the system response with a 
small number of carefully selected samples. 

This report focuses on development and improvement of the limit surface 
(LS) search. The LS is an important concept in system reliability analysis. The 
LS could be briefly described as a hyper-surface in the system 
uncertainty/parametric space separating the regions leading to a prescribed 
system outcome. For example, if the uncertainty/parametric space is the one 
generated by the reactor power level and duration of the batteries, the system is a 
nuclear power plant and the system outcome discriminating variable is the clad 
failure in a station black-out scenario, then the LS separates the combinations of 
reactor power level and battery duration that lead to clad failure from those that 
does not. 
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Improving Limit Surface Search Algorithms in RAVEN 
Using Acceleration Schemes 

1. INTRODUCTION 
RAVEN [1–6] is advancing its capability to perform statistical analyses of stochastic dynamic 

systems, putting a big effort in the identification and development of methodologies able to identify the 
region of interest in the uncertain/parametric space optimizing the computational resources. This effort is 
aligned with RAVEN’s mission to provide the tools needed by the risk-informed safety margin 
characterization (RISMC) path-lead [7] under the Department of Energy Light Water Reactor 
Sustainability Program. [8] 

Investigation of the probabilistic evolution of accident scenarios for a complex system such as a 
nuclear power plant (NPP) is not a trivial challenge. The complexity of the system to be modeled leads to 
demanding computational requirements even to simulate one of the many possible evolutions of an 
accident scenario (tens of central processing unit [CPU] hours). At the same time, the probabilistic 
analysis requires thousands of runs (simulation of one of the possible scenario evolutions) to investigate 
outcomes characterized by low probability and severe consequence. 

The probabilistic analysis is performed by (1) sampling the stochastic parameters, and (2) evaluating 
the system response for the given set of sampled parameters. As already mentioned, sampling the 
uncertain domain generally requires a large amount of samples, increasing with non-linearity of the 
physics model representing the figure of merit (FOM) of interest, and decreasing with the probability of 
the event under consideration (low probability events require a large number of samples). In addition, it is 
worth mentioning that the scope of the analysis is not only to determine outcome variable values or 
probabilities such as core damage probability but more in general, to evaluate the overall system response 
for different combinations of the stochastic parameters (e.g., response surfaces). 

The large number of samples required and computational cost of each sample (single stochastic 
realization) may limit the capability to perform a full probabilistic risk assessment (PRA) analysis of 
complex systems. To effectively answer this challenge, it is necessary to find approaches to reduce the 
(1) number of samples needed to perform a comprehensive PRA analysis, and (2) computational expense 
of each simulation run (high-fidelity code/s that employs the physic/s of interest). RAVEN implements 
both approaches by developing reduced order models (ROMs). ROMs are mathematical models of fast 
evaluation (approximately milliseconds) that can be trained by a given set of already performed samples 
of the system, using a blend of regression and interpolation techniques. The ROMs can answer both the 
challenges previously mentioned. ROMs can be built to seek for the minimum set of samples that allow 
determining the probability associated to a specific outcome of the system (i.e., in adaptive sampling 
methodologies). In addition, they can be built to represent the original physical model (high-fidelity 
code), replacing the simulation code itself and therefore providing a very fast tool to evaluate the system 
response. It needs to be noticed that, obviously, ROMs approximate the simulation code, and therefore the 
answer they provide is always affected by an error. 

The milestone reported in June 2014 [9] described the infrastructure of the RAVEN code, presenting 
all the capabilities available at that time. The initial adaptive sampling strategy (limit surface [LS] 
search), in RAVEN, was already available and explained at the time. In the following year of 
development, the RAVEN adaptive sampling method was improved with more sophisticated convergence 
acceleration techniques. This milestone report illustrates these acceleration methodologies. 
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This report is structured as follows: 

• Section 2 gives a brief overview of the RISMC approach 

• Section 3 gives an overview of the RAVEN code with its main components 

• Section 4 introduces the concept of LS, the search algorithm, how such methodology is implemented, 
and the acceleration methods subject of this report 

• Section 5 presents a series of test cases to prove the validity of acceleration schemes implemented 
compared to the previous adaptive sampling approach and classical sampling methodologies 

• Section 6 highlights the possible future development paths 

• Section 7 presents conclusions. 

2. RISK-INFORMED SAFETY MARGIN CHARACTERIZATION 
APPROACH 

The RISMC pathway develops and delivers approaches to manage safety margins. [7] This important 
information supports NPP owner/operator decision-making associated with near- and long-term 
operation. The RISMC approach can optimize plant safety and performance by incorporating a novel 
interaction between probabilistic risk simulation and mechanistic codes for plant-level physics. The new 
approach allows the risk evaluation tool (e.g., RAVEN) to serve as a “scenario generator” that feeds 
information to the mechanistic codes. The new approach fits with the intrinsic goals of the RISMC 
pathway to: 

1. Develop and demonstrate a risk-assessment method coupled to safety margin quantification. 
Decision-makers can use such methodology as part of their margin management strategies. 

2. Create an advanced RISMC toolkit. This RISMC toolkit would enable a more accurate representation 
of an NPP safety margin and its associated influence on operations and economics. 

When evaluating the safety margin, not only does the frequency of an event (e.g., core damage) need 
assessed, but also the system “probabilistic distance” to safety-related events and how it is possible to 
increase this distance through proper application of risk-informed margin management. In general terms, 
a “margin” is usually characterized either in a deterministic or probabilistic flavor. In a deterministic 
fashion, it is defined by the ratio (or, alternatively, the difference) of system capacity (i.e., strength) over 
(minus) the load to which the system is exposed. In a probabilistic fashion, it is defined by the probability 
that the load exceeds the capacity (in percentage or absolute value). A probabilistic safety margin is 
generated by the application of the above margin definition to a safety metric such as clad temperature 
(load) versus maximum clad temperature failure (capacity) in accident scenarios. 

The RISMC pathway uses the probabilistic margin approach to quantify impacts to reliability and 
safety. As part of the quantification, both probabilistic (via risk simulation) and mechanistic (via physics 
models) approaches are used, as represented in Figure 1. Safety margin and uncertainty quantification rely 
on plant physics (e.g., thermal-hydraulics and reactor kinetics) coupled with probabilistic risk simulation. 
The coupling takes place through the interchange of physical parameters (e.g., pressures and 
temperatures) and operational or accident scenarios. 
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Figure 1. Schematic of risk-informed margin management approach. 

As already mentioned, the RISMC approach heavily relies on multi-physics systems simulator codes 
(e.g., RELAP-7 [10]) coupled with stochastic analysis tools (e.g., RAVEN [1-6]). 

By using the RISMC approach, the PRA analysis is performed by (see Figure 2): 

1. Associating a probability distribution function (PDF) to the set of parameters 𝑺𝑺, which include timing 
of events, initial conditions, and model parameters (e.g., friction coefficient) 

2. Performing stochastic sampling of the PDFs defined in Step 1 to generate a realization of 𝒔𝒔 ∈ 𝑺𝑺 

3. Simulating the system response for each realization 𝒔𝒔, generated in Step 2 

4. Repeating Steps 2 and 3 M times and evaluating user-defined stochastic parameters. 

 
Figure 2. Stochastic dynamic system. 
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In this methodology environment, the RAVEN code represents the tool in charge for performing such 
analysis and, the smart sampling algorithms (e.g., LS search) represent essential methods to increase its 
effectiveness. 

3. RAVEN FRAMEWORK 
3.1 Introduction 

As inferred from the initial introduction, the LS search algorithm and acceleration schemes, subjects 
of this report, were implemented and assessed within the probabilistic and uncertainty quantification 
framework, RAVEN. Hence, it is helpful to provide a brief overview of the code and its main capabilities 
and internal structure. 

RAVEN was developed in a highly modular and pluggable way to enable easy integration of different 
programming languages (i.e., C++ and Python) and coupling with any system/physic code. Its main goal 
is to provide a tool to allow exploration of the uncertain domain, dispatching several different capabilities 
in an integrated environment. 

3.2 Software Infrastructure Overview 
The main idea behind the design of the RAVEN software package is the creation of a multi-purpose 

framework characterized by high flexibility with respect to the possible set of analysis that a user might 
request. To obtain this result, the code infrastructure must be capable of constructing the 
analysis/calculation flow at run-time, interpreting the user-defined instructions, and assembling the 
different analysis tasks following a user-specified scheme. 

The need to achieve such flexibility, combined with reasonably fast development, pushed toward the 
programming language that is naturally suitable for this kind of approach: Python. 

Hence, RAVEN is coded in Python and characterized by an object-oriented design. The core of the 
analysis performable through RAVEN is represented by a set of basic components (entities) the user can 
combine, to create a custom analysis flow. A list of these components and summary of their most 
important functionalities are as follows: 

• Distribution: The probability of a specific system outcome is related to the probability of the set of 
input parameters and initial conditions that led to such outcome. Moreover, some sampling techniques 
(e.g., Monte-Carlo [MC]) explore the input space influenced by the probabilistic distribution 
associated to the input variables. Consequently, RAVEN possess a large library of PDFs. 

• Sampler: A proper approach to sample the input space is fundamental for optimizing the 
computational time. In RAVEN, a “sampler” determines a unique perturbation strategy that is applied 
to the input space of a system. The association of uncertain variables and their corresponding 
probability distributions constitute the probabilistic input space on which the sampler operates. 

• Model: A model is the representation of a physical system (e.g., NPP); it is therefore capable of 
predicting the evolution of a system given a coordinate set in the input space (i.e., the initial condition 
of the system phase space). 

• ROM: The evaluation of the system response, as a function of the coordinates in the uncertain domain 
(also known as input space), is very computationally expensive, which makes brute-force approaches 
(e.g., MC methods) unpractical. ROMs are used to lower this cost by reducing the number of needed 
points and prioritizing the area of the uncertain domain that needs to be explored. They are a pure 
mathematical representation of the link between the input and output spaces for a particular system. 

The list above is not comprehensive of all the RAVEN framework components, which also include 
visualization and storage infrastructure, statistical post-processors, and a data mining suite. 
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3.2.1 Distribution Entity 
As already mentioned, the perturbation of the input space (initial conditions/parameters affected by 

uncertainties) needs to be performed to account for their probabilistic distributions. RAVEN provides, 
through an interface to the BOOST library, the following univariate (truncated and not) distributions: 

• Bernoulli 

• Binomial 

• Exponential 

• Logistic 

• Lognormal 

• Normal 

• Poisson 

• Triangular 

• Uniform 

• Weibull 

• Gamma 

• Beta 

• Categorical. 

The use of univariate distributions for sampling initial conditions is based on the assumption that the 
uncertain parameters are not correlated with each other. Quite often uncertain parameters are subject to 
correlations and thus the univariate approach is not applicable. This happens when a generic outcome 
depends on multiple variables or vice versa the outcome dependency description cannot be collapsed to a 
function of a single variable. RAVEN currently supports N-dimensional (N-D) PDFs both in the form of 
multivariate normal distribution and user-provided PDFs. The user can provide files containing the 
distribution values on either Cartesian or sparse grid. Depending on the grid structure used to provide the 
distribution values, RAVEN determines the interpolation algorithm used in the evaluation of the imported 
cumulative distribution function (CDF)/PDF: 

• N-D spline [11] for Cartesian grids 

• Inverse weight [12] for sparse grids. 

Internally, RAVEN provides the needed N-D differentiation and integration algorithms to compute 
the PDF from the CDF and vice versa. This is needed to cover both cases where the user provides the 
PDF or CDF. 

As already mentioned, the sampling methods use the distributions to perform probability-weighted 
perturbations. For example, in the MC approach, a random number ∈ [0,1] is generated (probability 
threshold) and the CDF, corresponding to that probability, is inverted to retrieve the parameter value 
usable in the simulation. The existence of the inverse for univariate distributions is guaranteed by the 
monotonicity of the CDF. For N-D distributions, this condition is not sufficient since the 𝑪𝑪𝑪𝑪𝑪𝑪(𝑿𝑿) →
[𝟎𝟎,𝟏𝟏],𝒙𝒙 ∈ 𝑹𝑹𝑵𝑵 and therefore, it could not be a bijective function. From an application point of view, this 
means the inverse of an N-D CDF is not unique. 

As an example, Figure 3 shows a multivariate normal distribution for a pipe failure as a function of 
the pressure and temperature. The plane identifies an iso-probability surface (in this case, a line) that 
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represents a probability threshold of 50% in this example. Hence, the inverse of this CDF is an infinite 
number of points. 

 
Figure 3. Example of two-dimensional multivariate probability distribution function. 

As easily inferable, the standard sampling approach cannot directly be employed. When multivariate 
distributions are used, RAVEN implements a surface search algorithm to identify the iso-probability 
surface location. Once the location of the surface is found, RAVEN chooses, randomly, one point on it. 

3.2.2 Sampler 
As already mentioned, the sampler is a key entity in the RAVEN framework to employ most of its 

capabilities of analysis. Indeed, it performs the driving of the specific sampling strategy and, hence, 
determines the effectiveness of the analysis, from both an accuracy and computational point of view. The 
samplers, that are available in RAVEN, are categorized in three main classes: 

1. Forward 

2. Dynamic event tree (DET) 

3. Adaptive. 

The following subsections briefly introduce the forward and DET samplers. As the adaptive samplers 
are the subject of this report, they are addressed separately in more detail. It is also worth mentioning that 
the adaptive samplers that are the subject of this report are focused on the search of the LS, while there is 
a parallel effort internally founded at Idaho National Laboratory aimed to construct an adaptive sampler 
for the full representation of the system response by polynomial interpolation. Unfortunately the only 
reference present at this time on this work is the RAVEN manual. [3] 

3.2.2.1 Forward Samplers. The forward sampler category collects all the strategies that perform 
the sampling of the input space without exploiting, through dynamic learning approaches, the information 
made available from the outcomes of calculation previously performed (adaptive sampling) and the 
common system evolution (patterns) that different sampled calculations can generate in the phase space 
(DET). 

In the RAVEN framework, several different forward samplers are available: 

• MC 

• Stratified (if equally spaced in probability ->LHS) 

• Grid based 

• Factorial designs: 

Pipe Temperature Pipe Pressure 
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— Full factorial 

— Two-level fractional-factorial 

— Plackett-Burman 

• Response surface designs: 

— Box-Behnken 

— Central composite 

• Stochastic collocation. 

Since most of the forward sampling strategies previously listed are well known, they are not fully 
described in this report. More details regarding the MC, stratified, and grid sampling strategies are found 
in Ref. [9]; details regarding the factorial and response surface designs are found in Ref. [4]. In 
conclusion, detailed information about the stochastic collocation method is found in Ref. [13]. 

3.2.2.2 Dynamic Event Tree Sampler. To clarify the idea behind the DET sampler currently 
available in RAVEN, a brief overview is needed. 

In technological complex systems, such as NPPs, an accident scenario begins with an initiating event 
and then evolves over time through the interaction of deterministic and stochastic events. This mutual 
action leads to the production of infinitely many different outcomes. When for the same point in the input 
space the system might generate an infinite number of final status of the system, the system generates a 
continuous DET with infinite branches. At each time along the trajectory of the system in the phase space, 
the system might take a different path that is determined by a multivariate PDF. Since the continuous 
problem is almost untreatable, an approximate approach is needed to perform the PRA analysis. An 
approximation alternative is offered by the event tree approach or more recently by the DET approach. 

In PRA analysis, in the conventional event tree [14] approaches, branches are used to differentiate 
among different statuses of the system and they do not have a temporal meaning (e.g., auxiliary generator 
working/not working). This approach lacks the capability to evaluate the impact of timing of the transition 
between different statuses of the system (in reality some treatment is possible but in a very costly 
fashion). To overcome these limitations, a “dynamic” approach is needed. The DET [14] technique brings 
several advantages, among which is the fact that it simulates probabilistic system evolution in a way that 
is consistent with its deterministic time evolution. This is done by taking the timing of events explicitly 
into account, leading to a more realistic and mechanistically consistent analysis of the possible evolution 
the system. This feature of the DET is very important, for example, when the complexity of the system 
leads to strong non-linear responses that characteristically evolve over time (the non-linear structure of 
the system strongly changes during the time evolution of the scenario). This result is obtained by “letting” 
the system code determine the pathway of an accident scenario within a probabilistic “environment.” 

From an application point of view, an N-D grid is built on the CDF space that is constructed by a 
tensor product of the CDF corresponding to each probabilistic variable characterizing the system. Those 
probabilistic variables represent coordinates of the phase space of the system that have a probability of 
changing from their initial value; the change probability is a function of the overall system status and 
time. When the system simulation starts, a complex system of controls (trigger system) monitor the 
system evolution and in particular the transition CDF for those probabilistic variables given the overall 
status of the system and time. When the CDF of one of those variables reaches the border of an N-D cell 
of the grid in the CDF space, a second simulation is started where the transition of the probabilistic 
variable has effectively taken place while the original simulation advance in time without any change in 
the variable. Each simulation carries along its own conditional probability. A more complete description 
of this methodology is found in Ref. [14]. 
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Figure 4 shows a practical DET example. In this particular case, it is assumed that the probability 
failure of a pipe depends on the fluid pressure magnitude. Three probability thresholds are defined on the 
CDF. One simulation is spawned (0). As soon as the pressure of the fluid reaches a value corresponding 
to a 33% probability (CDF), a stop signal is sent and the framework starts two new simulations 
(branches). The branch in which the system evolved to the newer condition (pipe failed, red line) carries 
33% of the probability, while the other the complementary amount. The same procedure is repeated at 
point 2. 

 
Figure 4. Example of dynamic event tree. 

Generally, not all the input space can be explored using a DET approach. For instance, usually the 
parameters affected by aleatory uncertainty are sampled using a DET approach, while the ones 
characterized by epistemic uncertainty are sampled through forward sampling strategies. At the moment a 
hybrid approach (forward sampling of initial conditions followed by a DET strategy) is available. 

As already mentioned, this strategy requires a tight interaction between the system code and sampling 
driver (i.e., RAVEN framework). In addition, the system code must have a control logic capability (i.e., 
trigger system). For these reasons, the application of this sampling approach to a generic code needs more 
effort when compared to the other samplers available in RAVEN. Currently, the DET is fully available 
for the thermal-hydraulic codes RELAP-7 and RELAP5-3D. [15] 

3.2.2.3 Models. The model entity, in the RAVEN environment, represents a “connection pipeline” 
between the input and output spaces. The RAVEN framework does not own any physical model (i.e., it 
does not possess the equations needed to simulate any physical system), but implements application 
program interfaces (APIs) by which these models are supplied by the users. The RAVEN framework 
provides APIs for three different model categories: 
• Codes 

• Externals 

• ROMs. 

The code model represents the communication pipe between the RAVEN and any external software. 

Currently, RAVEN has implemented APIs for RELAP5-3D, RELAP-7, any Multi-Physics 
Object-Oriented Simulation Environment-based [16] application, and the PHISICS code [17]. 
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The external model allows the user to create, in a Python file (imported, at run-time, in the RAVEN 
framework), its own model (e.g., set of equations representing a physical model, connection to another 
code, or control logic.). This model is interpreted/used by the framework and, at run-time, becomes part 
of RAVEN itself. 

The data exchange between RAVEN and the system code is performed by direct software interface or 
files. If the system code is parallelized, data exchange by files is generally the way to follow since it is 
much more optimized in large clusters. 

Since the ROMs are key tools for the LS search acceleration schemes, they are addressed in 
Section 4. 

3.2.3 Simulation Environment 
Figure 5 shows a schematic representation of the whole framework, highlighting the communication 

pipes among the different modules and engines. As seen in Figure 5, all the components discussed so far 
are addressed. In addition, the data management, mining, and processing modules are shown. 

 
Figure 5. RAVEN schematic module interaction. 

From a user’s standpoint, RAVEN is perceived as a pool of tools and data. Any action in which the 
tools are applied to the data is considered a ‘step’ in the RAVEN environment. Since this report is 
focused on LS algorithms, that require sampling of the uncertain domain, only the “step” that is designed 
for this task (multiRun) is mentioned. 

The “multiRun” step is designed to manage several runs (sampling) to explore a single model. At the 
beginning of each subsequential run, the sampler provides the new values of the variables to be modified. 
The code API places those values properly in the code input file, generates the run command, and asks the 
job handler (RAVEN’s module) to queue the corresponding run. The job handler manages the parallel 
execution of as many runs as possible within a user-prescribed amount of computational resources. It also 
informs the multiRun step when a new set of output files, generated by one of the code runs, are ready to 
be processed. The multiRun step passes the new output files to the code API that collects the data in the 
RAVEN internal format. At the end, the sampler is queried to assess if the sequence of runs is ended, if 
not, the multiRun step controller asks for a new set of values from the sampler and the sequence is 
restarted. 
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The job handler is currently capable to run different instances of the code in parallel and can also 
handle codes that are internally multithreaded or using any form of message passing interface parallel 
implementation. 

RAVEN is also capable of plotting the simulation outcomes while the set of sampling is performed 
and storing the data for later recovery. 

4. LIMIT SURFACE SEARCH 
As already mentioned, the key subject of this report is the development of convergence acceleration 

schemes for the LS search algorithm. LS search is one of the adaptive (or smart) sampling strategies 
developed within the RAVEN framework. 

As briefly mentioned, the motivation of adaptive sampling strategies is that physic simulations are 
often computationally expensive, time-consuming, and with a large number of uncertain parameters. 
Thus, exploring the space of all possible simulation outcomes is almost infeasible using finite computing 
resources. During simulation-based PRA analysis, it is important to discover the relationship between a 
potentially large number of uncertain parameters and the response of a simulation using as few simulation 
trials as possible. 

This is a typical context where “goal” oriented sampling could be beneficial. Among the different 
types of goal-oriented sampling, RAVEN uses a schema where few observations, obtained from the 
model run, are used to build a simpler and faster evaluable mathematical representation of the model 
(ROM). The ROM is then used to predict where further exploration of the input space could be most 
informative. This information is used to select new locations in the input space for which a code run is 
executed (see Figure 6). The new observations are used to update the ROM and this process iterates until, 
within a certain metric, it is converged. 

 
Figure 6. Example of limit surface schematic. 
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To summarize, in the case of the LS search, a ROM is used to determine which location in the input 
space further observations is most informative, to establish the location of the LS, then code runs are 
executed on those locations and the ROM updated. The process continues until the location of the LS is 
established within a certain tolerance. 

4.1 Limit Surface Concept and Properties 
As already mentioned, this report describes the acceleration schemes implemented for the research of 

the LS. [18] To properly explain these acceleration algorithms, it is necessary to analyze the concept of 
the LSs, firstly, from a mathematical and, secondly, from a practical point of view. 

Consider a dynamic system that is represented in the phase space by: 

𝒚𝒚� = 𝑯𝑯(𝒙𝒙�, 𝒕𝒕,𝒑𝒑�) (1) 
 
where 

𝒚𝒚� = coordinate of the system in the phase space 

𝒙𝒙�, 𝒕𝒕,𝒑𝒑� = independent variables that are separated, respectively, in spatial, temporal, and parameters’ 
independent variables (distinction between (𝒙𝒙�, 𝒕𝒕,𝒑𝒑�) is purely based on engineering 
considerations). 

Now it is possible to introduce the concept of “goal” function, 𝑪𝑪. 𝑪𝑪 is a binary function that, based on 
the response of the system, can assume the value 0 (false) to indicate that the system is properly available 
(e.g., system success) and 1 (true) to testify that the system is not available (e.g., failure of the system): 

𝑪𝑪 =  𝑪𝑪(𝒚𝒚�,𝒙𝒙�, 𝒕𝒕,𝒑𝒑�) = 𝑪𝑪(𝑯𝑯(𝒙𝒙�, 𝒕𝒕,𝒑𝒑�),𝒙𝒙�, 𝒕𝒕,𝒑𝒑�) = 𝑪𝑪(𝒙𝒙�, 𝒕𝒕,𝒑𝒑�) (2) 
 

To simplify the dissertation in this report and without loss of generality, assume that 𝑪𝑪 does not 
depend on time (e.g., 𝑪𝑪 ← ∫ 𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕𝒆𝒆𝒆𝒆𝒆𝒆

𝒕𝒕𝟎𝟎
(𝒙𝒙�, 𝒕𝒕,𝒑𝒑�)): 

𝑪𝑪 =  𝑪𝑪(𝒙𝒙�,𝒑𝒑�) (3) 
 

To simplify the mathematical description of the LS concept, it is possible to hypothesize that the 
equation describing the PDF time evolution of the system in the phase space is of type Gauss-Codazzi (in 
its Liouville’s derivation), which allows ensuring that all the stochastic phenomena in the system are 
representable as PDFs in the uncertain domain. This allows combining the parametric space with the 
initial condition space: 

(𝒙𝒙�) ← (𝒙𝒙�,𝒑𝒑�) 

𝑪𝑪(𝒙𝒙�) ← 𝑪𝑪(𝒙𝒙�,𝒑𝒑�) 
(4) 

 
This assumption is rarely violated, for example for those systems that present an intrinsic stochastic 

behavior (e.g., the dynamic of a particle of dust in the air where it continuously and randomly interacts 
with the molecules of air that “move” with different velocities and in different and random directions). In 
most of the cases of interest in the safety analysis, the above-mentioned assumption is correct. A heuristic 
approach to the characterization of system stochastic behaviors is reported in Ref. [6]. 
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Under the above simplifications, it is possible to identify the region of the input space (𝑽𝑽) leading to a 
specific outcome of the “goal” function. In particular, it can be defined, for example, the failure region 𝑽𝑽𝑭𝑭 
as the region of the input space where 𝑪𝑪 = 𝟏𝟏: 

𝑽𝑽𝑭𝑭 = {∀𝒙𝒙�|𝑪𝑪(𝒙𝒙�) = 𝟏𝟏} (5) 
 

The definition of the complementary of the failure region is obviously: 

𝑽𝑽𝑭𝑭𝒄𝒄 = {∀𝒙𝒙�|𝑪𝑪(𝒙𝒙�) = 𝟎𝟎} (6) 
 

Its boundary is the named LS: 

𝑳𝑳𝒔𝒔 = 𝝏𝝏𝑽𝑽𝑭𝑭 = 𝝏𝝏{∀𝒙𝒙�|𝑪𝑪(𝒙𝒙�) = 𝟏𝟏} (7) 
 

The identification of the LS location is necessary to identify boundary regions for which the system 
under consideration will or will not exceed certain FOMs (e.g., operative margins). 

The LS location is extremely important for design optimization and issue mitigation and, in addition, 
its informative content can be used to analyze the system to characterize its behavior from a stochastic 
point of view. Consider 𝒙𝒙� ∈ 𝑽𝑽 and 𝒙𝒙�~𝑿𝑿�, where 𝒙𝒙� is the random variate realization of the stochastic 
variable 𝑿𝑿�. 

If 𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�) is the probability density function of 𝑿𝑿�, the failure probability of the system (𝑷𝑷𝑭𝑭) is: 

𝑷𝑷𝑭𝑭 = �𝒅𝒅𝒙𝒙�𝑪𝑪(𝒙𝒙�)𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�)
 

𝑽𝑽
= � 𝒅𝒅𝒙𝒙�𝑪𝑪(𝒙𝒙�)𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�)

 

𝑽𝑽𝑭𝑭+𝑽𝑽𝑭𝑭
𝒄𝒄

 (8) 

 
And, based on the definition given in Equations (4) and (5): 

𝑷𝑷𝑭𝑭 = � 𝒅𝒅𝒙𝒙� 𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�)
 

𝑽𝑽𝑭𝑭
 (9) 

 
Equations (8) and (9) are summarized by stating that the system failure probability is equivalent to 

the probability of the system being in the uncertain subdomain (region of the input space) that leads to a 
failure pattern. This probability is equal to the probability-weighted hyper-volume that is surrounded by 
the LS. 

It is beneficial for the reader to assess the LS concept through an example related to the safety of an 
NPP. 

As an example, consider a station black-out (SBO) scenario in an NPP. Suppose that the only 
uncertain parameters are: 

• 𝒕𝒕𝑭𝑭 : Temperature that would determine the failure of the fuel cladding 

• 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫: Recovery time of the diesel generators (DGs) that can guarantee, through the emergency core 
cooling system (ECCS), the removal of the decay heat. 
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And, the corresponding CDF (uniform) is: 

𝒕𝒕𝑭𝑭~𝒑𝒑𝒑𝒑𝒑𝒑𝑻𝑻𝑭𝑭(𝑻𝑻𝑭𝑭) =

⎩
⎪
⎨

⎪
⎧ = 𝟎𝟎 𝒊𝒊𝒊𝒊 𝒕𝒕𝑭𝑭 < 𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎

=
𝟏𝟏

(𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎) = 𝚫𝚫𝒕𝒕𝑭𝑭
= 𝟎𝟎 𝒊𝒊𝒊𝒊 𝒕𝒕𝑭𝑭 > 𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎

 (10) 

 

𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫~𝒑𝒑𝒑𝒑𝒑𝒑𝑹𝑹𝑹𝑹𝑫𝑫𝑫𝑫𝑫𝑫(𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫) =

⎩
⎪
⎨

⎪
⎧ = 𝟎𝟎 𝒊𝒊𝒊𝒊 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫 < 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎

=
𝟏𝟏

(𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎) = 𝚫𝚫𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫
= 𝟎𝟎 𝒊𝒊𝒊𝒊 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫 > 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎

 (11) 

 
For simplicity, assume that the clad temperature is a quadratic function of the DG recovery time in an 

SBO scenario: 

𝒕𝒕 = 𝒕𝒕𝟎𝟎 + 𝜶𝜶 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝟐𝟐 (12) 
 

and that the 𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎 > 𝒕𝒕𝟎𝟎 + 𝜶𝜶 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎
𝟐𝟐, 𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎 < 𝒕𝒕𝟎𝟎 + 𝜶𝜶 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎

𝟐𝟐. 

The LS, failure region, and active part of the failure region (failure region with non-zero probability) 
are illustrated in Figure 7 (in agreement with the above assumptions). 

In this case, the transition/failure probability is evaluated as follows: 

𝑷𝑷𝑭𝑭 = � 𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�)𝒅𝒅𝒙𝒙� 
𝑽𝑽𝑭𝑭

=  � 𝒑𝒑𝒑𝒑𝒑𝒑𝑻𝑻𝑭𝑭(𝑻𝑻𝑭𝑭)𝒅𝒅𝒕𝒕𝑭𝑭� 𝒑𝒑𝒑𝒑𝒑𝒑𝑹𝑹𝑹𝑹𝑫𝑫𝑫𝑫𝑫𝑫(𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫)
+∞

�𝒕𝒕𝑭𝑭−𝒕𝒕𝟎𝟎𝜶𝜶

+∞

𝟎𝟎
𝒅𝒅𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫 

𝑷𝑷𝑭𝑭 = �
𝟏𝟏

𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎
𝒅𝒅𝒕𝒕𝑭𝑭 �

𝟏𝟏
𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎

𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎

�𝒕𝒕𝑭𝑭−𝒕𝒕𝟎𝟎𝜶𝜶

𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎

𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎

𝒅𝒅𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫 

𝑷𝑷𝑭𝑭 =
𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎
𝚫𝚫𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫

+
𝟐𝟐𝜶𝜶

𝟑𝟑(𝚫𝚫𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝚫𝚫𝒕𝒕𝑭𝑭)
� �

𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒕𝒕𝟎𝟎
𝜶𝜶

𝟑𝟑/𝟐𝟐

− �
𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒕𝒕𝟎𝟎

𝜶𝜶

𝟑𝟑/𝟐𝟐

� 

(13) 

 
This simple example is useful to understand how the LS is defined in a practical example (that is 

analyzed numerically in the results section) and how the hyper-volume needs weighted with respect to the 
probability in the uncertain domain. An example of the LS computed by RAVEN, using RELAP-7, is 
shown in Figure 7. 
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Figure 7. Example of limit surface. 

4.2 Reduced Order Models 
As briefly and previously mentioned, a ROM, also called a surrogate model, is a mathematical 

representation of a system, used to predict a selected FOM of a physical system. 

The “training” is a process that, sampling the physical model represented by the high-fidelity 
simulator (e.g., RELAP-7, RELAP5-3D, and PHISICS), is aimed to improve the prediction capability 
(capability to predict the status of the system given a realization of the uncertain domain) of the ROM. 
Two characteristics of these models are generally assumed (even if exceptions are possible): 

1. The higher the number of realizations in the training sets, the higher the accuracy of the prediction 
performed by the ROM is. This statement is true for most of the cases although some ROMs might be 
subject to the over-fitting issues. The over-fitting phenomenon is not analyzed in this report, since its 
occurrence highly depends on the algorithm type, and, hence, the problem needs to be analyzed for all 
the large number of ROM types currently available in RAVEN. Currently, it is advisable that the user, 
that chooses a particular ROM construction algorithm, consults the relative literature. As reported in 
Section 6, in the near future, the RAVEN team is planning to address this problem, identifying and 
implementing algorithms for the “automatic” calibration of all the ROMs’ input parameters. 

2. The smaller the size of the input domain with respect to the variability of the system response, the 
more likely the ROM is able to represent the system response space. 

To provide a very simple idea of a ROM, assume that the final response space of a physical system is 
governed by the transfer function 𝑯𝑯(𝒙𝒙�), that, from a practical point of view, represents the outcome of the 
system, based on the initial conditions 𝒙𝒙�. Now, sample the domain of variability of the initial conditions 𝒙𝒙� 
to create a set of 𝑵𝑵 realizations of the input and response space �𝒙𝒙�𝒊𝒊,𝑯𝑯(𝒙𝒙�𝒊𝒊)�, 𝒊𝒊 = 𝟏𝟏,𝑵𝑵, named “training” 
set. Based on the data set generated, it is possible to construct a mathematical representation (𝑮𝑮(𝒙𝒙�):𝒙𝒙�𝒊𝒊) of 
the real system 𝑯𝑯(𝒙𝒙�), which will approximate its response (see Figure 8): 

𝑮𝑮(𝒙𝒙�):𝒙𝒙�𝒊𝒊 → 𝑮𝑮(𝒙𝒙�𝒊𝒊) ≅ 𝑯𝑯(𝒙𝒙�𝒊𝒊) (14) 
 



 

15 

 
Figure 8. Example of reduced order model representation of physical system (regression). 

The ROMs reported above are generally named “regressors,” among which all the most common data 
fitting algorithms are found (e.g., least-square for construction of linear models). 

An important class of ROMs for the work presented hereafter is the one containing the so-called 
“classifiers.” A classifier is a ROM that is capable of representing the system behavior from a binary 
point of view (e.g., event happened/not happened or failure/success). It is a model (set of equations) that 
identifies to which category an object belongs in the feature (input) space. Referring to the example that 
brought to Equation (14), a classifier is represented as follows (see Figure 9): 

𝑮𝑮(𝒙𝒙�):𝒙𝒙�𝒊𝒊 → 𝑮𝑮(𝒙𝒙�𝒊𝒊) ≅ 𝑪𝑪(𝑯𝑯(𝒙𝒙�𝒊𝒊)) (15) 
 

The function 𝑪𝑪(𝑯𝑯(𝒙𝒙�𝒊𝒊) = 𝒚𝒚�) is the so-called “goal” function that is able to recast the response of the 
system 𝑯𝑯(𝒙𝒙�) into a binary form (e.g., failure/success). As an example, referring to Figure 9, the “goal” 
function would be: 

𝑪𝑪(𝒚𝒚�) = �𝟏𝟏𝟎𝟎
𝒊𝒊𝒊𝒊 𝒚𝒚� > 𝟏𝟏.𝟎𝟎
𝒊𝒊𝒊𝒊 𝒚𝒚� ≤ 𝟏𝟏.𝟎𝟎 (16) 

 

 
Figure 9. Example of reduced order model representation of physical system (classifier). 
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Hence, the ROM of type classifier 𝑮𝑮(𝒙𝒙�) will operate in the space transformed through the “goal” 
function 𝑪𝑪(𝒚𝒚�).  

The classifiers and regressors currently available in RAVEN are organized in two main classes: 

1. Model-based algorithms 

2. Data-based algorithms. 

In the first class, the created ROM aims to approximate the response of the system as a function of the 
input parameters. These algorithms construct a functional representation of the system. In RAVEN there 
are several different types of model-based algorithms, such as support vector machines (SVMs), Kriging-
based interpolators, discriminant-based models, and polynomial chaos. 

On the other side, data-based algorithms do not build a response-function-based ROM but classify or 
predict the response of the system from the neighborhood graph constructed from the training data, 
without any dependencies on a particular prediction model. 

These algorithms directly build a neighborhood structure as the ROM (e.g., a relaxed Gabriel graph) 
on the initial training data. In RAVEN, there are several different types of data-based algorithms, such as 
nearest neighbors and decision trees. 

4.3 Limit Surface Search Algorithm 
Determination of the LS location is extremely challenging, depending on the particular 

physics/phenomena that are investigated. To identify the real location of the LS, evaluation of system 
responses is needed, through the high-fidelity code (e.g., RELAP-7, and RELAP5-3D), in the full domain 
of uncertainty (infinite number of combinations of uncertainties represented by the respective PDFs). 
Obviously, this is not a feasible approach, and a reasonable approximation is to locate the LS on a 
Cartesian N-D grid, in the uncertain domain. 

In reality, the location of the LS is not exactly determined but rather bounded. The algorithm 
determines the set of grid nodes between which the transition 0/1 of the “goal” function happens. This set 
is also classified with respect to the value of the “goal” function. With reference to Figure 10, for 
example, green is used for grid nodes with a “goal” function that equals 0 and red when the “goal” 
function equals 1. 

 
Figure 10. Example of limit surface search evaluation grid. 
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Each evaluation of the “goal” function in one of the grid nodes implies the evaluation of the 
high-fidelity code (e.g., RELAP-7) for the corresponding set of entry in the uncertain space. As already 
mentioned, evaluation of the high-fidelity code is computationally expensive and, in order to identify the 
LS, RAVEN should appraise each point in the N-D grid covering the uncertainty space. Discretization 
depends on the accuracy requested by the user. In most cases, this approach is not feasible and, 
consequentially, the process needs accelerated by using “predicting” methods that, in RAVEN, are 
represented by the employment of supervised learning algorithms. 

What RAVEN implements is, in reality, what is commonly referred to as an active learning process 
that ultimately results in training of a ROM of type classifier capable of predicting the outcome of the 
“goal” function for any given point of the uncertain space. 

In an active learning process, a supervised learning algorithm is combined with criteria to choose the 
next node in the N-D grid that needs explored, using the high-fidelity physical model. This process is 
repeated until, under a particular metric, the prediction capabilities of the supervised learning algorithm 
do not improve by further increasing the training set. 

In more detail, the iterative scheme could be summarized through the following steps: 

1. A limited number of points in the uncertain space {𝒙𝒙�𝒌𝒌} are selected via one of the forward sampling 
strategies (e.g., stratified or MC). 

2. The high-fidelity code is used to compute the status of the system for the set of points in the input set: 
{𝒙𝒙�(𝒕𝒕)}𝒌𝒌 = 𝑯𝑯({𝒙𝒙�}𝒌𝒌, 𝒕𝒕). 

3. The “goal” function is evaluated at the phase space coordinate of the system: {𝒄𝒄}𝒌𝒌 = 𝑪𝑪( {𝒙𝒙�(𝒕𝒕)}𝒌𝒌). 

4. The set of pairs {(𝒙𝒙�, 𝒄𝒄)𝒌𝒌} are used to train a ROM of type classifier, 𝑮𝑮({𝒙𝒙�}𝒌𝒌). 

5. The ROM classifier is used to predict the values of the “goal” function for all the 𝑵𝑵 nodes of the N-D 
grid in the domain space: 

𝑮𝑮�{𝒙𝒙�}𝒋𝒋� ≈ {𝒄𝒄}𝒋𝒋, 𝒋𝒋 = 𝟏𝟏, … ,𝑵𝑵 (17) 
 
6. The values of the “goal” function are used to determine the LS location based on the change of values 

of {𝒄𝒄}𝒋𝒋: 

{𝒄𝒄}𝒋𝒋 → 𝝏𝝏𝑽𝑽𝑭𝑭 (18) 
 
7. A new point is chosen to increase the training set and a new pair is generated. 

8. The procedure is repeated starting from Step 3 until convergence is achieved. The convergence is 
achieved when there are no changes in the location of the LS after a certain number of consecutive 
iterations. 

The iteration scheme is graphically shown in Figure 11. 
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Figure 11. Limit surface search conceptual scheme. 

It is important to notice that there is an additional requirement regarding the LS search algorithm. It is 
required that the LS location stays constant for a certain number (user-defined) of consecutive iterations. 
The reason for this choice is determine by the attempt to mitigate the effect of the build of non-linear bias 
in the searching pattern. Indeed, the searching algorithm might focus too much on a certain region of the 
LS while putting too few points in other zones and completely hiding undiscovered topological features 
of the LS. 

Regarding the strategy to choose the nodes on the N-D grid that needs evaluated in the iterative 
process for the LS identification, currently RAVEN employs a metric based on the distance between the 
predicted LS and the evaluations already performed. The points on the LS are ranked based on the 
distance from the closest training point already explored (the larger is the distance the higher is the score 
for the candidate point), and based on its persistence (the larger is the number of time the prediction of the 
“goal” function for that point have changed the higher is the score). 

Since this approach creates a queue of ranked candidates, it could be used also in the parallel 
implementation of the algorithm. When several training points are run in parallel, it is possible that the 
evaluation of one additional point does not alter dramatically the location of the LS. Consequently, it is 
possible that the candidate with the highest score is already being submitted for evaluation and possibly 
the simulation is not yet completed. In this case, to avoid submitting the same evaluation point twice, 
RAVEN will search among all the ranked candidates (in descending order) for the one that was not 
submitted for evaluation. Even if it is extremely unlikely that all the candidates were submitted, in this 
remote event, RAVEN will choose the next point employing an MC strategy. 
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4.4 Acceleration Schemes 
This subsection addresses the acceleration schemes that were implemented. All of these algorithms 

are based on the devolvement of some propaedeutic capabilities, within the RAVEN framework, that are 
addressed in Subsection Error! Reference source not found.. 

4.4.1 Propaedeutic Development 
As already mentioned, the methodologies addressed in the following subsections are based on the 

development of some additional capabilities in the RAVEN code. Three main developments were crucial 
for development of the acceleration schemes: 

• Grid entity 

• Limit surface post-processor 

• Limit surface integration post-processor. 

The following subsections briefly explain these developments. 

4.4.1.1 Grid Entity. Implementation of a grid entity, within the RAVEN framework, was very 
important to develop the acceleration algorithms later addressed in this report. In the past, RAVEN did 
not have an object that was fully dedicated in handling N-D Cartesian grids, but, every component of the 
code in need of such a structure was internally constructing its own. This approach created a certain level 
of redundancy and made the integration/interaction of multiple grid-based objects complex (e.g., LS 
search, factorial, and LS post-processor). For these reasons, development of a single object, capable of 
handling all the common needs regarding grid handling, was pursued and accomplished. The new entity 
can handle Cartesian and sparse grid. 

4.4.1.2 Limit Surface Post-processor. Another important development is represented by 
implementation of a post-processor for computing the LS. This post-processor can be used to compute the 
LS, based on already-generated data. For example, it is generally used to generate the LS at the end of a 
non-adaptive sampling strategy (e.g., MC or factorial). 

In addition, to remove redundancy, it is also directly used by the LS search sampling strategy. 

4.4.1.3 Limit Surface Integration Post-processor. As already mentioned, the hyper-volume, 
which is bounded by the LS, is a measure of the probability of the event that is modeled through the 
“goal” function. For this reason, a post-processor was developed to compute the weighted (or not) integral 
of the LS. 

The computation of the LS integral is currently performed employing an MC integration scheme. 

4.4.2 Acceleration through Multi-grid Approach 
The location of the LS, being a numerical iterative process, can be known given a certain tolerance. 

As already mentioned, the LS search is done by constructing an evaluation grid, on which the acceleration 
ROM is inquired. The tolerance of the iterative determines how the evaluation grid is discretized. Before 
addressing the new acceleration scheme, it is important to introduce some concepts on the employed 
numerical process. 
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Assume that each of D dimensions of the uncertain domain is discretized with the same number of 
equally-spaced nodes N (see Figure 12), with discretization size indicated by 𝒉𝒉𝒊𝒊. Hence, the Cartesian 
grid contains ND individual nodes, indexed through the multi-index vector 𝒋𝒋̅ = (𝒋𝒋𝒊𝒊=𝟏𝟏→𝑫𝑫), 𝒋𝒋𝒊𝒊 ≤ 𝑵𝑵∀𝒊𝒊. 
Introducing the vectors 𝑰𝑰� = (𝟏𝟏, … ,𝟏𝟏) and 𝑵𝑵� = (𝑵𝑵, … ,𝑵𝑵), the “goal” function is expressed on this N-D 
grid as: 

𝑪𝑪(𝒙𝒙�) = �𝝋𝝋𝒋𝒋̅(𝒙𝒙�)𝑪𝑪�𝒙𝒙�𝒋𝒋̅�
𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
 (19) 

 
where 

𝝋𝝋𝒋𝒋 ̅= characteristic function of the hyper-volume 𝜴𝜴𝒋𝒋̅ surrounding the node 𝒙𝒙�𝒋𝒋̅: 

𝝋𝝋𝒋𝒋̅(𝒙𝒙�) = �
𝟏𝟏, 𝒊𝒊𝒊𝒊 𝒙𝒙� ∈ 𝜴𝜴𝒋𝒋̅
𝟎𝟎, 𝒊𝒊𝒊𝒊 𝒙𝒙� ∉ 𝜴𝜴𝒋𝒋̅

 (20) 

 
where 

𝜴𝜴𝒋𝒋̅ = ��𝒙𝒙𝒋𝒋𝒊𝒊 −
𝒉𝒉𝒊𝒊
𝟐𝟐

,𝒙𝒙𝒋𝒋𝒊𝒊 +
𝒉𝒉𝒊𝒊
𝟐𝟐 �

𝑫𝑫

𝒊𝒊=𝟏𝟏

 (21) 

 

 

Figure 12. Discretization grid. 

 

The probability of the uncertain parameters is expressed as: 
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𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�) = �𝝋𝝋𝒋𝒋̅(𝒙𝒙�)𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅�
𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
 (22) 

 
Following the approach briefly explained in Subsection 4.1, the probability of the event (e.g., failure) 

could be expressed as: 

𝑷𝑷𝑭𝑭 = ��𝒉𝒉𝒊𝒊

𝑫𝑫

𝒊𝒊=𝟏𝟏

���𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅�𝑪𝑪�𝒙𝒙�𝒋𝒋̅�
𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
� (23) 

 
Under certain assumptions [18], the concept of active hyper-volume 𝑽𝑽𝑨𝑨 as the region of the input 

space identified by the support of the uncertain parameters’ probability density functions 𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�) could 
be introduced; Equation (23) is re-casted, using a Taylor expansion, as follows: 

𝑷𝑷𝑭𝑭 = �𝑪𝑪(𝒙𝒙�)𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�)𝒅𝒅𝒙𝒙�
 

𝑽𝑽
= � 𝑪𝑪(𝒙𝒙�) ��𝝋𝝋𝒋𝒋̅(𝒙𝒙�)�𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅� + �

𝝏𝝏𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�
𝝏𝝏𝒙𝒙𝒊𝒊

�
𝒙𝒙�𝒋𝒋̅
�𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋𝒊𝒊�

𝑫𝑫

𝒊𝒊=𝟏𝟏

�
𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
�

 

𝑽𝑽𝑨𝑨
𝒅𝒅𝒙𝒙� (24) 

 
And, considering the evaluation grid as: 

𝑷𝑷𝑭𝑭 = � � 𝑪𝑪(𝒙𝒙�)�𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅�+ �
𝝏𝝏𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�
𝝏𝝏𝒙𝒙𝒊𝒊

�
𝒙𝒙�𝒋𝒋̅
�𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋𝒊𝒊�

𝑫𝑫

𝒊𝒊=𝟏𝟏

�
𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋 ̅∈ 𝑽𝑽𝑨𝑨

𝒅𝒅𝒙𝒙� (25) 

 
At this point, it is possible to label, in the active hyper-volume, the subdomain identified by the nodes 

where the “goal” function 𝑪𝑪(𝒙𝒙�) changes its value (the frontier nodes between the region where 𝑪𝑪(𝒙𝒙�) = 𝟏𝟏 
and 𝑪𝑪(𝒙𝒙�) = 𝟎𝟎) 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭. 

Consequentially, it is possible to identify the subdomains in which the “goal” function 𝑪𝑪(𝒙𝒙�) is equal 
to 0 (𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟎𝟎  ∉  𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭) and 1 (𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟏𝟏  ∉  𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭): 

� � 𝑪𝑪(𝒙𝒙�)�𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅�+ �
𝝏𝝏𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�
𝝏𝝏𝒙𝒙𝒊𝒊

�
𝒙𝒙�𝒋𝒋̅
�𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋𝒊𝒊�

𝑫𝑫

𝒊𝒊=𝟏𝟏

�
𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐
𝒅𝒅𝒙𝒙�

𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋̅ ∈ 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟎𝟎

= 𝟎𝟎 (26) 

 

� � 𝑪𝑪(𝒙𝒙�)�𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅� +�
𝝏𝝏𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�
𝝏𝝏𝒙𝒙𝒊𝒊

�
𝒙𝒙�𝒋𝒋̅
�𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋𝒊𝒊�

𝑫𝑫

𝒊𝒊=𝟏𝟏

�𝒅𝒅𝒙𝒙�
𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋̅ ∈ 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟏𝟏

= � � �𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅� + �
𝝏𝝏𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�
𝝏𝝏𝒙𝒙𝒊𝒊

�
𝒙𝒙�𝒋𝒋̅
�𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋𝒊𝒊�

𝑫𝑫

𝒊𝒊=𝟏𝟏

�𝒅𝒅𝒙𝒙�
𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋̅∈𝑽𝑽𝑨𝑨∩𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟏𝟏

 

(27) 
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Equation (25) is now expressed as: 

𝑷𝑷𝑭𝑭 = � ��𝒉𝒉𝒊𝒊

𝑫𝑫

𝒊𝒊=𝟏𝟏

�𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅�
𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋̅ ∈ 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟏𝟏

+ 𝑶𝑶�𝒉𝒉𝑵𝑵+𝟏𝟏�

+ � � 𝑪𝑪(𝒙𝒙�)�𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅� + �
𝝏𝝏𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�
𝝏𝝏𝒙𝒙𝒊𝒊

�
𝒙𝒙�𝒋𝒋̅
�𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋𝒊𝒊�

𝑫𝑫

𝒊𝒊=𝟏𝟏

�𝒅𝒅𝒙𝒙�
𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋̅ ∈ 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭

 

(28) 

 
As inferred from Equation (28), the process is bounded if the surface-area-to-volume ratio (amount of 

surface area per unit volume) is in favor of the volume: 

� ��𝒉𝒉𝒊𝒊

𝑫𝑫

𝒊𝒊=𝟏𝟏

�𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅�
𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋̅ ∈ 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟏𝟏

 ≫ � �� 𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅�𝒅𝒅𝒙𝒙�
𝒙𝒙�𝒋𝒋̅−

𝒉𝒉�
𝟐𝟐

𝒙𝒙�𝒋𝒋̅−
𝒉𝒉�
𝟐𝟐

�
𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋̅ ∈ 𝑽𝑽 𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭

 (29) 

 
If the grid is built in the transformed space of probability (i.e., replacing the measure 𝒅𝒅𝒙𝒙� with 

𝒅𝒅𝝁𝝁� = 𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�𝒅𝒅𝒙𝒙�), the condition expressed in Equation (29) is reduced: 

# 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 ∈  𝑽𝑽𝑨𝑨  ∩  𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟏𝟏 ≫ # 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 ∈  𝑽𝑽 𝑨𝑨 ∩  𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭 (30) 

This means that error is bounded by the total probability contained in the cells on the frontier of the 
LS. 

Based on this derivation, it is clear how important it is to keep the content of the total probability on 
the frontier of the LS as low as possible, and simultaneously, increase the importance of the volume of the 
failure/event region as much as possible (to improve the surface-area-to-volume ratio). 

In order to do that, the step size in probability should be significantly reduced (𝒉𝒉𝒊𝒊
𝒑𝒑 → 𝟎𝟎+). Even if 

this is theoretically feasible, it is computational inapplicable. To approach a similar result, it is possible to 
learn from other numerical methods that use the technique of adaptive meshing for the resolution of the 
partial differential equation system (e.g., finite element methods). 

For this reason, an acceleration scheme was designed and developed employing a multi-grid 
approach. The main idea, it is to re-cast the iterative process in two different subsequential steps. Firstly, 
performing the LS search on a coarse evaluation grid, and once converged, adaptively refining the cells 
that lie on the frontier of the LS (𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭) and, consequentially, converging on the new refined grid. 

The iteration scheme is graphically shown in Figure 13. 
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Figure 13. Multi-grid limit surface search scheme. 

In more detail, the iterative scheme could be summarized through the following steps: 

1. The user specifies two tolerances in probability (CDF): 𝜸𝜸𝒈𝒈=𝟏𝟏 for the initial coarse grid and 𝜸𝜸𝒈𝒈=𝟐𝟐 for 
the refined grid, where 𝜸𝜸𝒈𝒈=𝟏𝟏 > 𝜸𝜸𝒈𝒈=𝟐𝟐. 

2. Following Equation (21), the initial coarse evaluation grid 𝜴𝜴 
𝟏𝟏 is constructed (𝑵𝑵𝒈𝒈=𝟏𝟏 total nodes). The 

discretization of this grid is done to have cells with a content of probability equal to 𝜸𝜸𝒈𝒈=𝟏𝟏. 

3. A limited number of points in the uncertain space {𝒙𝒙�𝒌𝒌} are selected via one of the forward sampling 
strategies (e.g., stratified or MC). 

4. The high-fidelity code is used to compute the status of the system for the set of points in the input set: 
{𝒙𝒙�(𝒕𝒕)}𝒌𝒌 = 𝑯𝑯({𝒙𝒙�}𝒌𝒌, 𝒕𝒕). 

5. The “goal” function is evaluated at the phase space coordinate of the system: {𝒄𝒄}𝒌𝒌 = 𝑪𝑪( {𝒙𝒙�(𝒕𝒕)}𝒌𝒌). 

6. The set of pairs {(𝒙𝒙�, 𝒄𝒄)𝒌𝒌} are used to train a ROM of type classifier, 𝑮𝑮({𝒙𝒙�}𝒌𝒌). 
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7. The ROM classifier is used to predict the values of the “goal” function for all the 𝑵𝑵 nodes of the N-D 
grid in the domain space: 𝑮𝑮�{𝒙𝒙�}𝒋𝒋� ≈ {𝒄𝒄}𝒋𝒋, 𝒋𝒋 = 𝟏𝟏, … ,𝑵𝑵𝒈𝒈=𝟏𝟏. 

8. The values of the “goal” function are used to determine the LS location based on the change of values 
of {𝒄𝒄}𝒋𝒋  → 𝝏𝝏𝑽𝑽𝑭𝑭. 

9. A new point is chosen to increase the training set and a new pair is generated. 

10. The procedure is repeated starting from Step 5 until convergence is achieved on grid 𝜴𝜴 
𝒈𝒈. The 

convergence is reached when there are no changes in the location of the LS after a certain number of 
consecutive iterations (user-defined). 

11. When the convergence is achieved on the coarse grid 𝜴𝜴 
𝒈𝒈=𝟏𝟏, all the cells that lie on the frontier of the 

LS (𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭) are refined to contain an amount of probability equal to 𝜸𝜸𝒈𝒈=𝟐𝟐. 

12. Steps 7 through 9 are performed based on the new refined grid. Finally, the process starts again by 
performing Steps 5 through 10, until the convergence is achieved in the refined grid. 

As shown in Figure 13, the algorithm consists in searching the location of the LS proceeding with 
subsequential refinement of the subdomain, in the active space, that contains the LS. In this way, the 
computational burden is kept as low as possible. In addition, another advantage of this approach is that, 
since the refinement grid represents a constrained domain, the subsequential ROM training process can be 
regularized, since the LS between an iteration and the other can move, at maximum, within the refinement 
domain. 

5. TEST CASES 
To test the validity of the acceleration schemes, some test cases were designed and employed. For all 

test cases, the LS search is performed employing the algorithm that was presented in the June 2014 
milestone, the new acceleration schemes and a brute force approach where an MC sampling is used to 
generate a set of data that are used for a posteriori construction of the LS. 

It is worth mentioning that, even if in all the test cases presented hereafter, the independent variables 
defining the input space are associated with PDFs this is not required for application of the LS concept 
and the search methodologies presented in this report. 

When a probability is not associated with the input space, the LS search is simply a parametric search 
of the input space where the system satisfies certain constrains (e.g., does not fail under the accident 
scenario considered). 

The reason why all tests presented in this report possess a stochastic characterization of the input 
space is because one of the comparison metrics, between the different search methodologies, taken in 
account is the probability of the binary event represented by the “goal” function (e.g., the probability of 
failure). 

In the following subsections, three different examples are presented; the first two are based on 
analytical models using the RAVEN “external model” API, presented in Subsection 3.2.2.3, and the third 
is based on a pressurized water reactor (PWR) SBO employed with RELAP-7. 
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5.1 Simple Three-Dimensional Analytical Test 
As previously mentioned, the first test was performed using the RAVEN “external model.” The 

response of the system is modeled with the following simple equation: 

𝒚𝒚 = 𝒙𝒙𝟏𝟏𝟐𝟐 + 𝒙𝒙𝟏𝟏 ∗ 𝒙𝒙𝟐𝟐 ∗ 𝒙𝒙𝟑𝟑 (31) 
 
where 

𝒚𝒚 = outcome of the system 

𝒙𝒙𝟏𝟏, 𝒙𝒙𝟐𝟐, and 𝒙𝒙𝟑𝟑 = independent variables. 

It is assumed that the independent variables are affected by uncertainties that are stochastically 
modeled as follows: 

𝑿𝑿𝟏𝟏 ~ 𝑵𝑵(𝝁𝝁𝟏𝟏,𝝈𝝈𝟏𝟏);  𝒑𝒑𝒑𝒑𝒑𝒑(𝑿𝑿𝟏𝟏 = 𝒙𝒙𝟏𝟏) =  
𝟏𝟏

𝝈𝝈𝟏𝟏√𝟐𝟐𝝅𝝅
𝒆𝒆
−(𝒙𝒙𝟏𝟏−𝝁𝝁𝟏𝟏)𝟐𝟐

𝟐𝟐𝝈𝝈𝟏𝟏
𝟐𝟐 𝟎𝟎.𝟎𝟎 ≤ 𝒙𝒙𝟏𝟏 ≤ 𝟏𝟏.𝟎𝟎

𝝁𝝁𝟏𝟏 = 𝟎𝟎.𝟓𝟓 𝝈𝝈𝟏𝟏 = 𝟎𝟎.𝟏𝟏
 (32) 

 

𝑿𝑿𝟐𝟐 ~ 𝑵𝑵(𝝁𝝁𝟐𝟐,𝝈𝝈𝟐𝟐);  𝒑𝒑𝒑𝒑𝒑𝒑(𝑿𝑿2 = 𝒙𝒙2) =  
𝟏𝟏

𝝈𝝈𝟏𝟏√𝟐𝟐𝝅𝝅
𝒆𝒆
−(𝒙𝒙𝟐𝟐−𝝁𝝁𝟐𝟐)𝟐𝟐

𝟐𝟐𝝈𝝈𝟐𝟐
𝟐𝟐 𝟎𝟎.𝟎𝟎 ≤ 𝒙𝒙𝟐𝟐 ≤ 𝟒𝟒.𝟎𝟎

𝝁𝝁𝟐𝟐 = 𝟐𝟐.𝟎𝟎 𝝈𝝈𝟐𝟐 = 𝟎𝟎.𝟐𝟐
 (33) 

 

𝑿𝑿𝟑𝟑 ~ 𝑼𝑼(𝒂𝒂,𝒃𝒃);  𝒑𝒑𝒑𝒑𝒑𝒑(𝑿𝑿𝟑𝟑) = �
𝟏𝟏

𝒃𝒃 − 𝒂𝒂
𝒂𝒂 ≤ 𝒙𝒙𝟑𝟑 ≤ 𝒃𝒃

𝟎𝟎 𝒙𝒙𝟑𝟑 < 𝒂𝒂,  𝒙𝒙𝟑𝟑 > 𝒃𝒃
𝒂𝒂 = 𝟏𝟏.𝟎𝟎 𝒃𝒃 = 𝟒𝟒.𝟎𝟎

 (34) 

 
For this particular case, the “goal” function represents a threshold phenomenon: 

𝑪𝑪(𝒚𝒚) = �+𝟏𝟏−𝟏𝟏
 𝒊𝒊𝒊𝒊 𝒚𝒚 > 𝟓𝟓.𝟎𝟎
 𝒊𝒊𝒊𝒊 𝒚𝒚 ≤ 𝟓𝟓.𝟎𝟎  (35) 

 
To compare the new multi-grid acceleration scheme and previous approach, the convergence criteria 

in Table 1 are used. 

Table 1. Simple three-dimensional analytical test: Limit surface search convergence criteria. 
Parameter Multi-grid LS Search Fixed-grid LS Search 

Persistency 25 25 
Tolerance (CDF) 2.7E−5 1.E−6* 
Multi-grid tolerance (CDF) 1.E−6* — 
*Final probability convergence tolerance. 

 
The ROM used for accelerating the convergence is an SVM classifier with a kerned based on radial 

basis function. 

In addition, a 100.000 samples MC is run; subsequentially, the a-posteriori LS is computed. 



 

26 

For all three employed sampling strategies, the final probability is computed using the LS integral 
post-processor explained in Subsection 4.4.1. 

Figure 14 and Figure 15 show the location of the samples and final LS for the multi-grid approach. 
There are no figures shown for the LS search method as they are similar to figures shown for the previous 
LS search method. 

  
Figure 14. Samples’ location in multi-grid limit 
surface approach (three-dimensional analytical test). 

Figure 15. Limit surface in multi-grid limit surface 
approach (three-dimensional analytical test). 

 
Table 2 compares the multi-grid and fixed-grid approaches. It is noticeable that the new acceleration 

scheme is brought to a speed-up factor (in terms of number of iterations and, consequentially, of runs) of 
approximately 2.6 (i.e., the multi-grid approach converged 2.6 times faster than the fixed-grid one). 

Table 2. Multi-grid and fixed-grid comparison (three-dimensional analytical test). 
Parameter Multi-grid LS Search Fixed-grid LS Search Speed-up Factor 

Number of iterations 1,951 5,085 Approximately 2.6 
Probability 2.8894E−02 2.8894E−02 — 
Probability MC 3.2750E−02 — — 

 
The probability computed with the LS obtained for both approaches is the same; this is another 

indication that both methodologies converge on the same solution (the converged LS location is exactly 
the same). 
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5.2 Two-Dimensional Test Case in Presence of Failure Islands 
In determining failure boundaries, the most challenging problem is identifying failure regions that are 

represented by a convex set of points and, thus, that completely isolate a portion of the uncertain domain. 
In safety analysis and PRA analysis, these types of boundaries are named failure “islands.” To test the 
new multi-grid algorithm with such a challenging problem, another analytical test was designed, using, 
again, the RAVEN “external model” API. The response of the system is modeled with the following 
simple equation: 

𝒚𝒚 = 𝒙𝒙𝟏𝟏𝟐𝟐 + 𝒙𝒙𝟐𝟐𝟐𝟐 (36) 
 
where 

𝒚𝒚 = outcome of the system 

𝒙𝒙𝟏𝟏and 𝒙𝒙𝟐𝟐 = independent variables. 

It is assumed that the independent variables are affected by uncertainties that are stochastically 
modeled as follows: 

𝑿𝑿𝟏𝟏 ~ 𝑵𝑵(𝝁𝝁𝟏𝟏,𝝈𝝈𝟏𝟏);  𝒑𝒑𝒑𝒑𝒑𝒑(𝑿𝑿𝟏𝟏 = 𝒙𝒙𝟏𝟏) =  
𝟏𝟏

𝝈𝝈𝟏𝟏√𝟐𝟐𝝅𝝅
𝒆𝒆
−(𝒙𝒙𝟏𝟏−𝝁𝝁𝟏𝟏)𝟐𝟐

𝟐𝟐𝝈𝝈𝟏𝟏
𝟐𝟐 −𝟓𝟓.𝟎𝟎 ≤ 𝒙𝒙𝟏𝟏 ≤ 𝟓𝟓.𝟎𝟎

𝝁𝝁𝟏𝟏 = 𝟎𝟎.𝟎𝟎 𝝈𝝈𝟏𝟏 = 𝟏𝟏.𝟓𝟓
 (37) 

 

𝑿𝑿𝟐𝟐 ~ 𝑵𝑵(𝝁𝝁𝟐𝟐,𝝈𝝈𝟐𝟐);  𝒑𝒑𝒑𝒑𝒑𝒑(𝑿𝑿2 = 𝒙𝒙2) =  
𝟏𝟏

𝝈𝝈𝟏𝟏√𝟐𝟐𝝅𝝅
𝒆𝒆
−(𝒙𝒙𝟐𝟐−𝝁𝝁𝟐𝟐)𝟐𝟐

𝟐𝟐𝝈𝝈𝟐𝟐
𝟐𝟐 −𝟔𝟔.𝟎𝟎 ≤ 𝒙𝒙𝟐𝟐 ≤ 𝟔𝟔.𝟎𝟎

𝝁𝝁𝟐𝟐 = 𝟎𝟎.𝟎𝟎 𝝈𝝈𝟐𝟐 = 𝟏𝟏.𝟐𝟐
 (38) 

 
For this particular case, the “goal” function represents a two-threshold phenomenon: 

𝑪𝑪(𝒚𝒚) = �+𝟏𝟏−𝟏𝟏
 𝒊𝒊𝒊𝒊 𝟎𝟎.𝟓𝟓 < 𝒚𝒚 ≤ 𝟏𝟏.𝟎𝟎

𝒊𝒊𝒊𝒊 𝒚𝒚 ≤ 𝟓𝟓.𝟎𝟎   (39) 

 
To compare the new multi-grid acceleration scheme and previous approach, the convergence criteria 

in Table 3 are used. 

Table 3. Two-dimensional analytical test in presence of failure islands: Limit surface search convergence 
criteria. 

Parameter Multi-grid LS Search Fixed-grid LS Search 
Persistency 20 20 
Tolerance (CDF) 5.625E−6 6.25E−7* 
Multi-grid tolerance (CDF) 6.25E−7* — 
*Final probability convergence tolerance. 

 
The ROM used for accelerating the convergence is an SVM classifier with a kerned based on radial 

basis function. 

In addition, a 100.000 samples MC is run; subsequentially, the a-posteriori LS is computed. 
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For all three employed sampling strategies, the final probability is computed using the LS integral 
post-processor mentioned in Subsection 4.4.1. 

Figure 16 and Figure 17 show the location of the samples and final LS for the multi-grid approach. 
There are no figures shown for the LS search method as they are similar to figures shown for the previous 
LS search method. 

  
Figure 16. Samples’ location in multi-grid limit 
surface approach (two-dimensional analytical test 
in presence of failure islands). 

Figure 17. Limit surface in multi-grid limit surface 
approach (two-dimensional analytical test in 
presence of failure islands). 

 
Table 4 compares the multi-grid and fixed-grid approaches. The number of iterations for both 

methodologies testifies how challenging the identification of failure “islands” is. Anyhow, it is noticeable 
that the new acceleration scheme is brought to a speed-up factor of approximately2.4 (i.e., the multi-grid 
approach converged 2.4 times faster than the fixed-grid one). 

Table 4. Multi-grid and fixed-grid comparison (two-dimensional analytical test in presence of failure 
islands). 

Parameter Multi-grid LS Search Fixed-grid LS Search Speed-up Factor 
Number of iterations 5,300 12,354 Approximately 2.4 
Probability 1.1241E−01 1.1241E−01 — 
Probability MC 1.1253E−01 — — 

 
The probability computed with the LS obtained for both approaches is the same; this is another 

indication that both methodologies converge on the same solution (the converged LS location is exactly 
the same). In addition, the difference between the probabilities computed with the MC approach and LS 
search approach is within the 0.1%. 
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5.3 Pressurized Water Reactor Station Black-out Demo Using 
RELAP-7 as System Code 

The previous examples demonstrated the functionality of the multi-grid LS search on analytical tests. 
It is important to assess how the new algorithm reacts to a real safety case. For this purpose, a PWR 
model was built, at INL, in the thermal-hydraulic code RELAP-7. The model is set up based on the 
parameters specified in the Organization for Economic Cooperation and Development main steam line 
break benchmark problem. [19] The reference design for the Organization for Economic Cooperation and 
Development main steam line break benchmark problem is derived from the reactor geometry and 
operational data of the Three Mile Island-1 NPP, which is a 2,772-MW, two-loop PWR (see the system 
scheme shown in Figure 18). 

 
Figure 18. Scheme of Three Mile Island pressurized water reactor benchmark. 

The simulated scenario is a simplified SBO accident. 

To reach a steady-state condition, the simulation is run for 500 seconds without any change in its 
internal parameters. The reference scenario is summarized as follows (see Figure 19): 

• At t = 500 s, the external initiating event (e.g., earthquake) causes a loss of outside power event. The 
reactor successfully scrams, AC power is provided by the DGs and the ECCS keeps the reactor core 
cool. 

• At t1 = 2000 s, the DGs, which were providing emergency AC power, become unavailable. Without 
AC power, the ECCS is disabled as well and the core temperature increases. When AC power is 
recovered (t2), through either DGs or primary grid recovery, ECCS capabilities are restored and core 
temperature starts to decrease. 
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Figure 19. Example of loss of outside power scenario followed by diesel generators’ failure using 
RELAP-7 code. 

It is assumed that the DGs’ failure and ECCS recovery times are affected by uncertainties that are 
stochastically modeled as follows: 

𝑿𝑿𝟏𝟏 ~ 𝑵𝑵(𝝁𝝁𝟏𝟏,𝝈𝝈𝟏𝟏);  𝒑𝒑𝒑𝒑𝒑𝒑(𝑿𝑿𝟏𝟏 = 𝒙𝒙𝟏𝟏) =  
𝟏𝟏

𝝈𝝈𝟏𝟏√𝟐𝟐𝝅𝝅
𝒆𝒆
−(𝒙𝒙𝟏𝟏−𝝁𝝁𝟏𝟏)𝟐𝟐

𝟐𝟐𝝈𝝈𝟏𝟏
𝟐𝟐 𝟎𝟎.𝟎𝟎 ≤ 𝒙𝒙𝟏𝟏 ≤ 𝟖𝟖,𝟎𝟎𝟎𝟎𝟎𝟎.𝟎𝟎

𝝁𝝁𝟏𝟏 = 𝟒𝟒,𝟎𝟎𝟎𝟎𝟎𝟎.𝟎𝟎 𝝈𝝈𝟏𝟏 = 𝟏𝟏,𝟎𝟎𝟎𝟎𝟎𝟎.𝟎𝟎
 (40) 

 

𝑿𝑿𝟐𝟐 ~ 𝑵𝑵(𝝁𝝁𝟐𝟐,𝝈𝝈𝟐𝟐);  𝒑𝒑𝒑𝒑𝒑𝒑(𝑿𝑿2 = 𝒙𝒙2) =  
𝟏𝟏

𝝈𝝈𝟏𝟏√𝟐𝟐𝝅𝝅
𝒆𝒆
−(𝒙𝒙𝟐𝟐−𝝁𝝁𝟐𝟐)𝟐𝟐

𝟐𝟐𝝈𝝈𝟐𝟐
𝟐𝟐 𝟎𝟎.𝟎𝟎 ≤ 𝒙𝒙𝟐𝟐 ≤ 𝟒𝟒𝟒𝟒,𝟎𝟎𝟎𝟎𝟎𝟎.𝟎𝟎

𝝁𝝁𝟐𝟐 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟎𝟎 𝝈𝝈𝟐𝟐 = 𝟒𝟒,𝟎𝟎𝟎𝟎𝟎𝟎.𝟎𝟎
 (41) 

 
For this particular case, the “goal” function models a threshold on the peak-clad temperature (the 

maximum temperature reached by the cladding). For this analysis, a threshold of 1477.6 K (2200°F) is 
used: 

𝑪𝑪(𝒚𝒚) = �
+𝟏𝟏 (𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇)
−𝟏𝟏 (𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔)

 𝒊𝒊𝒊𝒊 𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ≥ 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟔𝟔 𝑲𝑲
 𝒊𝒊𝒊𝒊 𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 < 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟔𝟔 𝑲𝑲  (42) 
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To compare the new multi-grid acceleration scheme and previous approach, the convergence criteria 
in Table 5 are used. 

Table 5. RELAP-7 station black-out analysis: Limit surface search convergence criteria. 
Parameter Multi-grid LS Search Fixed-grid LS Search 

Persistency 20 20 
Tolerance (CDF) 5.625E−6 6.25E−7* 
Multi-grid tolerance (CDF) 6.25E−7* — 
*Final probability convergence tolerance. 

 
Also for this case, an SVM classifier, with a radial basis function kernel, is used in the LS search 

process. 

In addition, a 100.000 samples MC is run; subsequentially, the a-posteriori LS is computed. 

As for the other cases, for all three employed sampling strategies, the final probability is computed 
using the LS integral post-processor explained in Subsection 4.4.1. 

Figure 20 and Figure 21 show the location of the samples and final LS for the multi-grid approach. 
There are no figures shown for the LS search method as they are similar to figures shown for the previous 
LS search method. 

  

Figure 20. Samples’ location in multi-grid limit 
surface approach (two-dimensional pressurized 
water reactor station black-out scenario). 

Figure 21. Limit surface in multi-grid limit 
surface approach (loss of outside power scenario). 

 
Table 6 compares the multi-grid and fixed-grid approaches. 

Table 6. Multi-grid and fixed-grid comparison: RELAP-7 station black-out analysis. 
Parameter Multi-grid LS Search Fixed-grid LS Search Speed-up Factor 

Number of iterations 1701 2902 Approximately 1.7 
Probability 8.4170E−02 8.4170E−02 — 
Probability MC 8.4254E−02 — — 
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It is noticeable that determination of the LS location, in this case, is quite trivial. In such case, the 
gain in the convergence is not as good as the previous tests. Anyhow, a gain factor of approximately 1.7, 
for high-demanding physical models (e.g., system codes), can consistently decrease the number of CPU 
hours needed for a full PRA analysis. 

The probability computed with the LS obtained for both approaches is the same; this is another 
indication that both methodologies converge on the same solution (the converged LS location is exactly 
the same). In addition, the difference between the probabilities computed with the MC approach and LS 
search approach is within the 0.1%. 

6. FUTURE DEVELOPMENT 
In this report, a multi-grid acceleration scheme was explained. During accomplishment of this work, 

other possible methodologies were identified for the improvement of the convergence of the LS search. 
As reported in Subsection 4.4.2, the multi-grid approach consists in a two-step iterative process, firstly 
converging on a coarse grid and, then, on a refined one. This approach lets the user choose the refinement 
strategy, that most of the times, is quite complicated to define, overall for the stability of the ROM. To 
overcome and simplify the use of this new algorithm, in the near future, the method will be improved by 
adding an automated refinement scheme to focalize in the stabilization of the synthetic operator 
represented by the ROM. 

Another path of research and development is about the wrapping of the ROMs in an “outer” iterative 
process, based on the optimization of their internal parameters (e.g., penalty error factors and smoothing 
parameters). This converged ROM will then be used as an acceleration algorithm for the LS search 
method. 

In addition, development will focus on identifying and employing better algorithms for efficiently 
choosing the points in the phase space that need explored. The authors would like to explore a 
methodology that is based on using the directional derivatives directly computed, during the iterative 
process, on the LS. 

7. CONCLUSIONS 
This report focused on new development of the acceleration of the LS search from a mathematical 

and numerical point of view. The new acceleration algorithm based on the multi-grid approach looks 
extremely promising. It significantly improved the convergence of the LS search process, simultaneously 
reducing the CPU time to reach a stable solution. 

To design and develop the method, several developments were necessary; these developments, only 
briefly addressed in this report, are crucial for further research and development activities around the LS 
search process and will significantly facilitate the future implementations, allowing the RAVEN team to 
faster deploy future new acceleration schemes. 

Overall, RAVEN is proposed as a valid tool for a more comprehensive and computational efficient 
PRA analysis. 
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