

INL/EXT-15-36100

Light Water Reactor Sustainability Program

Improving Limit Surface Search Algorithms in RAVEN

Using Acceleration Schemes

July 2015

DOE Office of Nuclear Energy

DISCLAIMER
This information was prepared as an account of work sponsored by an agency of
the U.S. Government. Neither the U.S. Government nor any agency thereof, nor
any of their employees, makes any warranty, expressed or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or usefulness,
of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. References herein to any specific
commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, do not necessarily constitute or imply its
endorsement, recommendation, or favoring by the U.S. Government or any
agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the U.S. Government or any agency thereof.

INL/EXT-15-36100

Light Water Reactor Sustainability Program

Improving Limit Surface Search Algorithms
in RAVEN Using Acceleration Schemes

Andrea Alfonsi, Cristian Rabiti, Diego Mandelli, Joshua Cogliati,
Sonat Sen, Curtis Smith

July 2015

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov/lwrs

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

 v

EXECUTIVE SUMMARY
The RAVEN code is becoming a comprehensive tool to perform probabilistic

risk assessment, uncertainty quantification, and verification and validation. The
RAVEN code is being developed to support the risk-informed safety margin
characterization pathway to provide an set of methodologies and algorithms for
advanced risk analysis.

The risk-informed safety margin characterization approach applies stochastic
analysis tools to system simulator codes. The fundamental idea behind this
coupling approach is to perturb (by employing sampling strategies) timing and
sequencing of events, internal parameters of the system codes (i.e., uncertain
parameters of the physics model), and initial conditions to estimate values ranges
and associated probabilities of figures of merits of interest for engineering and
safety (e.g., core damage probability). This approach applied to complex systems
such as nuclear power plants requires performing a series of computationally
expensive simulation runs. The large computational burden is caused by the large
set of (uncertain) parameters characterizing those systems. Consequently,
exploring the uncertain/parametric domain, with a good level of confidence, is
generally not affordable, within the limited computational resources that are
currently available. In addition, the recent tendency to develop newer tools,
characterized by higher accuracy and needs for larger computational resources (if
compared with the presently-used legacy codes that were developed decades
ago), has made this issue even more compelling. To overcome these limitations,
the strategy for exploration of the uncertain/parametric space needs to use, at
best, resources focusing the computational effort in those regions of the
uncertain/parametric space that are “interesting” (e.g., risk-significant regions of
the input space) with respect to the targeted figures of merit (for example, the
failure of the system, subject of the analysis). These methodologies are named, in
the RAVEN environment, adaptive sampling strategies. These methodologies
infer the overall system response from surrogate models, constructed from
already existing samples (produced using high-fidelity simulations), and suggest
the most relevant location (coordinate in the input space) of the next sampling
point to be explored in the uncertain/parametric domain. When using those
methodologies, it is possible to understand features of the system response with a
small number of carefully selected samples.

This report focuses on development and improvement of the limit surface
(LS) search. The LS is an important concept in system reliability analysis. The
LS could be briefly described as a hyper-surface in the system
uncertainty/parametric space separating the regions leading to a prescribed
system outcome. For example, if the uncertainty/parametric space is the one
generated by the reactor power level and duration of the batteries, the system is a
nuclear power plant and the system outcome discriminating variable is the clad
failure in a station black-out scenario, then the LS separates the combinations of
reactor power level and battery duration that lead to clad failure from those that
does not.

 vi

 vii

CONTENTS
EXECUTIVE SUMMARY .. v

ACRONYMS ... ix

1. INTRODUCTION .. 1

2. RISK-INFORMED SAFETY MARGIN CHARACTERIZATION APPROACH 2

3. RAVEN FRAMEWORK ... 4
3.1 Introduction .. 4
3.2 Software Infrastructure Overview .. 4

3.2.1 Distribution Entity... 5
3.2.2 Sampler ... 6
3.2.3 Simulation Environment ... 9

4. LIMIT SURFACE SEARCH ... 10
4.1 Limit Surface Concept and Properties ... 11
4.2 Reduced Order Models .. 14
4.3 Limit Surface Search Algorithm .. 16
4.4 Acceleration Schemes .. 19

4.4.1 Propaedeutic Development ... 19
4.4.2 Acceleration through Multi-grid Approach .. 19

5. TEST CASES ... 24
5.1 Simple Three-Dimensional Analytical Test ... 25
5.2 Two-Dimensional Test Case in Presence of Failure Islands .. 27
5.3 Pressurized Water Reactor Station Black-out Demo Using RELAP-7 as

System Code .. 29

6. FUTURE DEVELOPMENT .. 32

7. CONCLUSIONS .. 32

8. REFERENCES ... 33

FIGURES

Figure 1. Schematic of risk-informed margin management approach. ... 3

Figure 2. Stochastic dynamic system. ... 3

Figure 3. Example of two-dimensional multivariate probability distribution function. 6

Figure 4. Example of dynamic event tree. .. 8

Figure 5. RAVEN schematic module interaction. .. 9

Figure 6. Example of limit surface schematic. .. 10

 viii

Figure 7. Example of limit surface.. 14

Figure 8. Example of reduced order model representation of physical system (regression). 15

Figure 9. Example of reduced order model representation of physical system (classifier). 15

Figure 10. Example of limit surface search evaluation grid. .. 16

Figure 11. Limit surface search conceptual scheme. .. 18

Figure 12. Discretization grid. .. 20

Figure 13. Multi-grid limit surface search scheme. .. 23

Figure 14. Samples’ location in multi-grid limit surface approach (three-dimensional
analytical test). .. 26

Figure 15. Limit surface in multi-grid limit surface approach (three-dimensional analytical test). 26

Figure 16. Samples’ location in multi-grid limit surface approach (two-dimensional analytical test
in presence of failure islands). .. 28

Figure 17. Limit surface in multi-grid limit surface approach (two-dimensional analytical test in
presence of failure islands). .. 28

Figure 18. Scheme of Three Mile Island pressurized water reactor benchmark. .. 29

Figure 19. Example of loss of outside power scenario followed by diesel generators’ failure using
RELAP-7 code. ... 30

Figure 20. Samples’ location in multi-grid limit surface approach (two-dimensional pressurized
water reactor station black-out scenario). ... 31

Figure 21. Limit surface in multi-grid limit surface approach (loss of outside power scenario). 31

TABLES

Table 1. Simple three-dimensional analytical test: Limit surface search convergence criteria. 25

Table 2. Multi-grid and fixed-grid comparison (three-dimensional analytical test). 26

Table 3. Two-dimensional analytical test in presence of failure islands: Limit surface search
convergence criteria. ... 27

Table 4. Multi-grid and fixed-grid comparison (two-dimensional analytical test in presence of
failure islands). ... 28

Table 5. RELAP-7 station black-out analysis: Limit surface search convergence criteria. 31

Table 6. Multi-grid and fixed-grid comparison: RELAP-7 station black-out analysis. 31

 ix

ACRONYMS
API application program interface

CDF cumulative distribution function

CPU central processing unit

DET dynamic event tree

DG diesel generator

ECCS emergency core cooling system

FOM figure of merit

LS limit surface

MC Monte-Carlo

N-D N-dimensional

NPP nuclear power plant

PDF probability distribution function

PRA probabilistic risk assessment

PWR pressurized water reactor

RISMC risk-informed safety margin characterization

ROM reduced order model

SBO station black-out

SVM support vector machine

 x

1

Improving Limit Surface Search Algorithms in RAVEN
Using Acceleration Schemes

1. INTRODUCTION
RAVEN [1–6] is advancing its capability to perform statistical analyses of stochastic dynamic

systems, putting a big effort in the identification and development of methodologies able to identify the
region of interest in the uncertain/parametric space optimizing the computational resources. This effort is
aligned with RAVEN’s mission to provide the tools needed by the risk-informed safety margin
characterization (RISMC) path-lead [7] under the Department of Energy Light Water Reactor
Sustainability Program. [8]

Investigation of the probabilistic evolution of accident scenarios for a complex system such as a
nuclear power plant (NPP) is not a trivial challenge. The complexity of the system to be modeled leads to
demanding computational requirements even to simulate one of the many possible evolutions of an
accident scenario (tens of central processing unit [CPU] hours). At the same time, the probabilistic
analysis requires thousands of runs (simulation of one of the possible scenario evolutions) to investigate
outcomes characterized by low probability and severe consequence.

The probabilistic analysis is performed by (1) sampling the stochastic parameters, and (2) evaluating
the system response for the given set of sampled parameters. As already mentioned, sampling the
uncertain domain generally requires a large amount of samples, increasing with non-linearity of the
physics model representing the figure of merit (FOM) of interest, and decreasing with the probability of
the event under consideration (low probability events require a large number of samples). In addition, it is
worth mentioning that the scope of the analysis is not only to determine outcome variable values or
probabilities such as core damage probability but more in general, to evaluate the overall system response
for different combinations of the stochastic parameters (e.g., response surfaces).

The large number of samples required and computational cost of each sample (single stochastic
realization) may limit the capability to perform a full probabilistic risk assessment (PRA) analysis of
complex systems. To effectively answer this challenge, it is necessary to find approaches to reduce the
(1) number of samples needed to perform a comprehensive PRA analysis, and (2) computational expense
of each simulation run (high-fidelity code/s that employs the physic/s of interest). RAVEN implements
both approaches by developing reduced order models (ROMs). ROMs are mathematical models of fast
evaluation (approximately milliseconds) that can be trained by a given set of already performed samples
of the system, using a blend of regression and interpolation techniques. The ROMs can answer both the
challenges previously mentioned. ROMs can be built to seek for the minimum set of samples that allow
determining the probability associated to a specific outcome of the system (i.e., in adaptive sampling
methodologies). In addition, they can be built to represent the original physical model (high-fidelity
code), replacing the simulation code itself and therefore providing a very fast tool to evaluate the system
response. It needs to be noticed that, obviously, ROMs approximate the simulation code, and therefore the
answer they provide is always affected by an error.

The milestone reported in June 2014 [9] described the infrastructure of the RAVEN code, presenting
all the capabilities available at that time. The initial adaptive sampling strategy (limit surface [LS]
search), in RAVEN, was already available and explained at the time. In the following year of
development, the RAVEN adaptive sampling method was improved with more sophisticated convergence
acceleration techniques. This milestone report illustrates these acceleration methodologies.

2

This report is structured as follows:

• Section 2 gives a brief overview of the RISMC approach

• Section 3 gives an overview of the RAVEN code with its main components

• Section 4 introduces the concept of LS, the search algorithm, how such methodology is implemented,
and the acceleration methods subject of this report

• Section 5 presents a series of test cases to prove the validity of acceleration schemes implemented
compared to the previous adaptive sampling approach and classical sampling methodologies

• Section 6 highlights the possible future development paths

• Section 7 presents conclusions.

2. RISK-INFORMED SAFETY MARGIN CHARACTERIZATION
APPROACH

The RISMC pathway develops and delivers approaches to manage safety margins. [7] This important
information supports NPP owner/operator decision-making associated with near- and long-term
operation. The RISMC approach can optimize plant safety and performance by incorporating a novel
interaction between probabilistic risk simulation and mechanistic codes for plant-level physics. The new
approach allows the risk evaluation tool (e.g., RAVEN) to serve as a “scenario generator” that feeds
information to the mechanistic codes. The new approach fits with the intrinsic goals of the RISMC
pathway to:

1. Develop and demonstrate a risk-assessment method coupled to safety margin quantification.
Decision-makers can use such methodology as part of their margin management strategies.

2. Create an advanced RISMC toolkit. This RISMC toolkit would enable a more accurate representation
of an NPP safety margin and its associated influence on operations and economics.

When evaluating the safety margin, not only does the frequency of an event (e.g., core damage) need
assessed, but also the system “probabilistic distance” to safety-related events and how it is possible to
increase this distance through proper application of risk-informed margin management. In general terms,
a “margin” is usually characterized either in a deterministic or probabilistic flavor. In a deterministic
fashion, it is defined by the ratio (or, alternatively, the difference) of system capacity (i.e., strength) over
(minus) the load to which the system is exposed. In a probabilistic fashion, it is defined by the probability
that the load exceeds the capacity (in percentage or absolute value). A probabilistic safety margin is
generated by the application of the above margin definition to a safety metric such as clad temperature
(load) versus maximum clad temperature failure (capacity) in accident scenarios.

The RISMC pathway uses the probabilistic margin approach to quantify impacts to reliability and
safety. As part of the quantification, both probabilistic (via risk simulation) and mechanistic (via physics
models) approaches are used, as represented in Figure 1. Safety margin and uncertainty quantification rely
on plant physics (e.g., thermal-hydraulics and reactor kinetics) coupled with probabilistic risk simulation.
The coupling takes place through the interchange of physical parameters (e.g., pressures and
temperatures) and operational or accident scenarios.

3

Figure 1. Schematic of risk-informed margin management approach.

As already mentioned, the RISMC approach heavily relies on multi-physics systems simulator codes
(e.g., RELAP-7 [10]) coupled with stochastic analysis tools (e.g., RAVEN [1-6]).

By using the RISMC approach, the PRA analysis is performed by (see Figure 2):

1. Associating a probability distribution function (PDF) to the set of parameters 𝑺𝑺, which include timing
of events, initial conditions, and model parameters (e.g., friction coefficient)

2. Performing stochastic sampling of the PDFs defined in Step 1 to generate a realization of 𝒔𝒔 ∈ 𝑺𝑺

3. Simulating the system response for each realization 𝒔𝒔, generated in Step 2

4. Repeating Steps 2 and 3 M times and evaluating user-defined stochastic parameters.

Figure 2. Stochastic dynamic system.

4

In this methodology environment, the RAVEN code represents the tool in charge for performing such
analysis and, the smart sampling algorithms (e.g., LS search) represent essential methods to increase its
effectiveness.

3. RAVEN FRAMEWORK
3.1 Introduction

As inferred from the initial introduction, the LS search algorithm and acceleration schemes, subjects
of this report, were implemented and assessed within the probabilistic and uncertainty quantification
framework, RAVEN. Hence, it is helpful to provide a brief overview of the code and its main capabilities
and internal structure.

RAVEN was developed in a highly modular and pluggable way to enable easy integration of different
programming languages (i.e., C++ and Python) and coupling with any system/physic code. Its main goal
is to provide a tool to allow exploration of the uncertain domain, dispatching several different capabilities
in an integrated environment.

3.2 Software Infrastructure Overview
The main idea behind the design of the RAVEN software package is the creation of a multi-purpose

framework characterized by high flexibility with respect to the possible set of analysis that a user might
request. To obtain this result, the code infrastructure must be capable of constructing the
analysis/calculation flow at run-time, interpreting the user-defined instructions, and assembling the
different analysis tasks following a user-specified scheme.

The need to achieve such flexibility, combined with reasonably fast development, pushed toward the
programming language that is naturally suitable for this kind of approach: Python.

Hence, RAVEN is coded in Python and characterized by an object-oriented design. The core of the
analysis performable through RAVEN is represented by a set of basic components (entities) the user can
combine, to create a custom analysis flow. A list of these components and summary of their most
important functionalities are as follows:

• Distribution: The probability of a specific system outcome is related to the probability of the set of
input parameters and initial conditions that led to such outcome. Moreover, some sampling techniques
(e.g., Monte-Carlo [MC]) explore the input space influenced by the probabilistic distribution
associated to the input variables. Consequently, RAVEN possess a large library of PDFs.

• Sampler: A proper approach to sample the input space is fundamental for optimizing the
computational time. In RAVEN, a “sampler” determines a unique perturbation strategy that is applied
to the input space of a system. The association of uncertain variables and their corresponding
probability distributions constitute the probabilistic input space on which the sampler operates.

• Model: A model is the representation of a physical system (e.g., NPP); it is therefore capable of
predicting the evolution of a system given a coordinate set in the input space (i.e., the initial condition
of the system phase space).

• ROM: The evaluation of the system response, as a function of the coordinates in the uncertain domain
(also known as input space), is very computationally expensive, which makes brute-force approaches
(e.g., MC methods) unpractical. ROMs are used to lower this cost by reducing the number of needed
points and prioritizing the area of the uncertain domain that needs to be explored. They are a pure
mathematical representation of the link between the input and output spaces for a particular system.

The list above is not comprehensive of all the RAVEN framework components, which also include
visualization and storage infrastructure, statistical post-processors, and a data mining suite.

5

3.2.1 Distribution Entity
As already mentioned, the perturbation of the input space (initial conditions/parameters affected by

uncertainties) needs to be performed to account for their probabilistic distributions. RAVEN provides,
through an interface to the BOOST library, the following univariate (truncated and not) distributions:

• Bernoulli

• Binomial

• Exponential

• Logistic

• Lognormal

• Normal

• Poisson

• Triangular

• Uniform

• Weibull

• Gamma

• Beta

• Categorical.

The use of univariate distributions for sampling initial conditions is based on the assumption that the
uncertain parameters are not correlated with each other. Quite often uncertain parameters are subject to
correlations and thus the univariate approach is not applicable. This happens when a generic outcome
depends on multiple variables or vice versa the outcome dependency description cannot be collapsed to a
function of a single variable. RAVEN currently supports N-dimensional (N-D) PDFs both in the form of
multivariate normal distribution and user-provided PDFs. The user can provide files containing the
distribution values on either Cartesian or sparse grid. Depending on the grid structure used to provide the
distribution values, RAVEN determines the interpolation algorithm used in the evaluation of the imported
cumulative distribution function (CDF)/PDF:

• N-D spline [11] for Cartesian grids

• Inverse weight [12] for sparse grids.

Internally, RAVEN provides the needed N-D differentiation and integration algorithms to compute
the PDF from the CDF and vice versa. This is needed to cover both cases where the user provides the
PDF or CDF.

As already mentioned, the sampling methods use the distributions to perform probability-weighted
perturbations. For example, in the MC approach, a random number ∈ [0,1] is generated (probability
threshold) and the CDF, corresponding to that probability, is inverted to retrieve the parameter value
usable in the simulation. The existence of the inverse for univariate distributions is guaranteed by the
monotonicity of the CDF. For N-D distributions, this condition is not sufficient since the 𝑪𝑪𝑪𝑪𝑪𝑪(𝑿𝑿) →
[𝟎𝟎,𝟏𝟏],𝒙𝒙 ∈ 𝑹𝑹𝑵𝑵 and therefore, it could not be a bijective function. From an application point of view, this
means the inverse of an N-D CDF is not unique.

As an example, Figure 3 shows a multivariate normal distribution for a pipe failure as a function of
the pressure and temperature. The plane identifies an iso-probability surface (in this case, a line) that

6

represents a probability threshold of 50% in this example. Hence, the inverse of this CDF is an infinite
number of points.

Figure 3. Example of two-dimensional multivariate probability distribution function.

As easily inferable, the standard sampling approach cannot directly be employed. When multivariate
distributions are used, RAVEN implements a surface search algorithm to identify the iso-probability
surface location. Once the location of the surface is found, RAVEN chooses, randomly, one point on it.

3.2.2 Sampler
As already mentioned, the sampler is a key entity in the RAVEN framework to employ most of its

capabilities of analysis. Indeed, it performs the driving of the specific sampling strategy and, hence,
determines the effectiveness of the analysis, from both an accuracy and computational point of view. The
samplers, that are available in RAVEN, are categorized in three main classes:

1. Forward

2. Dynamic event tree (DET)

3. Adaptive.

The following subsections briefly introduce the forward and DET samplers. As the adaptive samplers
are the subject of this report, they are addressed separately in more detail. It is also worth mentioning that
the adaptive samplers that are the subject of this report are focused on the search of the LS, while there is
a parallel effort internally founded at Idaho National Laboratory aimed to construct an adaptive sampler
for the full representation of the system response by polynomial interpolation. Unfortunately the only
reference present at this time on this work is the RAVEN manual. [3]

3.2.2.1 Forward Samplers. The forward sampler category collects all the strategies that perform
the sampling of the input space without exploiting, through dynamic learning approaches, the information
made available from the outcomes of calculation previously performed (adaptive sampling) and the
common system evolution (patterns) that different sampled calculations can generate in the phase space
(DET).

In the RAVEN framework, several different forward samplers are available:

• MC

• Stratified (if equally spaced in probability ->LHS)

• Grid based

• Factorial designs:

Pipe Temperature Pipe Pressure

Fa
ilu

re
 P

ro
ba

bi
lit

y

7

— Full factorial

— Two-level fractional-factorial

— Plackett-Burman

• Response surface designs:

— Box-Behnken

— Central composite

• Stochastic collocation.

Since most of the forward sampling strategies previously listed are well known, they are not fully
described in this report. More details regarding the MC, stratified, and grid sampling strategies are found
in Ref. [9]; details regarding the factorial and response surface designs are found in Ref. [4]. In
conclusion, detailed information about the stochastic collocation method is found in Ref. [13].

3.2.2.2 Dynamic Event Tree Sampler. To clarify the idea behind the DET sampler currently
available in RAVEN, a brief overview is needed.

In technological complex systems, such as NPPs, an accident scenario begins with an initiating event
and then evolves over time through the interaction of deterministic and stochastic events. This mutual
action leads to the production of infinitely many different outcomes. When for the same point in the input
space the system might generate an infinite number of final status of the system, the system generates a
continuous DET with infinite branches. At each time along the trajectory of the system in the phase space,
the system might take a different path that is determined by a multivariate PDF. Since the continuous
problem is almost untreatable, an approximate approach is needed to perform the PRA analysis. An
approximation alternative is offered by the event tree approach or more recently by the DET approach.

In PRA analysis, in the conventional event tree [14] approaches, branches are used to differentiate
among different statuses of the system and they do not have a temporal meaning (e.g., auxiliary generator
working/not working). This approach lacks the capability to evaluate the impact of timing of the transition
between different statuses of the system (in reality some treatment is possible but in a very costly
fashion). To overcome these limitations, a “dynamic” approach is needed. The DET [14] technique brings
several advantages, among which is the fact that it simulates probabilistic system evolution in a way that
is consistent with its deterministic time evolution. This is done by taking the timing of events explicitly
into account, leading to a more realistic and mechanistically consistent analysis of the possible evolution
the system. This feature of the DET is very important, for example, when the complexity of the system
leads to strong non-linear responses that characteristically evolve over time (the non-linear structure of
the system strongly changes during the time evolution of the scenario). This result is obtained by “letting”
the system code determine the pathway of an accident scenario within a probabilistic “environment.”

From an application point of view, an N-D grid is built on the CDF space that is constructed by a
tensor product of the CDF corresponding to each probabilistic variable characterizing the system. Those
probabilistic variables represent coordinates of the phase space of the system that have a probability of
changing from their initial value; the change probability is a function of the overall system status and
time. When the system simulation starts, a complex system of controls (trigger system) monitor the
system evolution and in particular the transition CDF for those probabilistic variables given the overall
status of the system and time. When the CDF of one of those variables reaches the border of an N-D cell
of the grid in the CDF space, a second simulation is started where the transition of the probabilistic
variable has effectively taken place while the original simulation advance in time without any change in
the variable. Each simulation carries along its own conditional probability. A more complete description
of this methodology is found in Ref. [14].

8

Figure 4 shows a practical DET example. In this particular case, it is assumed that the probability
failure of a pipe depends on the fluid pressure magnitude. Three probability thresholds are defined on the
CDF. One simulation is spawned (0). As soon as the pressure of the fluid reaches a value corresponding
to a 33% probability (CDF), a stop signal is sent and the framework starts two new simulations
(branches). The branch in which the system evolved to the newer condition (pipe failed, red line) carries
33% of the probability, while the other the complementary amount. The same procedure is repeated at
point 2.

Figure 4. Example of dynamic event tree.

Generally, not all the input space can be explored using a DET approach. For instance, usually the
parameters affected by aleatory uncertainty are sampled using a DET approach, while the ones
characterized by epistemic uncertainty are sampled through forward sampling strategies. At the moment a
hybrid approach (forward sampling of initial conditions followed by a DET strategy) is available.

As already mentioned, this strategy requires a tight interaction between the system code and sampling
driver (i.e., RAVEN framework). In addition, the system code must have a control logic capability (i.e.,
trigger system). For these reasons, the application of this sampling approach to a generic code needs more
effort when compared to the other samplers available in RAVEN. Currently, the DET is fully available
for the thermal-hydraulic codes RELAP-7 and RELAP5-3D. [15]

3.2.2.3 Models. The model entity, in the RAVEN environment, represents a “connection pipeline”
between the input and output spaces. The RAVEN framework does not own any physical model (i.e., it
does not possess the equations needed to simulate any physical system), but implements application
program interfaces (APIs) by which these models are supplied by the users. The RAVEN framework
provides APIs for three different model categories:
• Codes

• Externals

• ROMs.

The code model represents the communication pipe between the RAVEN and any external software.

Currently, RAVEN has implemented APIs for RELAP5-3D, RELAP-7, any Multi-Physics
Object-Oriented Simulation Environment-based [16] application, and the PHISICS code [17].

9

The external model allows the user to create, in a Python file (imported, at run-time, in the RAVEN
framework), its own model (e.g., set of equations representing a physical model, connection to another
code, or control logic.). This model is interpreted/used by the framework and, at run-time, becomes part
of RAVEN itself.

The data exchange between RAVEN and the system code is performed by direct software interface or
files. If the system code is parallelized, data exchange by files is generally the way to follow since it is
much more optimized in large clusters.

Since the ROMs are key tools for the LS search acceleration schemes, they are addressed in
Section 4.

3.2.3 Simulation Environment
Figure 5 shows a schematic representation of the whole framework, highlighting the communication

pipes among the different modules and engines. As seen in Figure 5, all the components discussed so far
are addressed. In addition, the data management, mining, and processing modules are shown.

Figure 5. RAVEN schematic module interaction.

From a user’s standpoint, RAVEN is perceived as a pool of tools and data. Any action in which the
tools are applied to the data is considered a ‘step’ in the RAVEN environment. Since this report is
focused on LS algorithms, that require sampling of the uncertain domain, only the “step” that is designed
for this task (multiRun) is mentioned.

The “multiRun” step is designed to manage several runs (sampling) to explore a single model. At the
beginning of each subsequential run, the sampler provides the new values of the variables to be modified.
The code API places those values properly in the code input file, generates the run command, and asks the
job handler (RAVEN’s module) to queue the corresponding run. The job handler manages the parallel
execution of as many runs as possible within a user-prescribed amount of computational resources. It also
informs the multiRun step when a new set of output files, generated by one of the code runs, are ready to
be processed. The multiRun step passes the new output files to the code API that collects the data in the
RAVEN internal format. At the end, the sampler is queried to assess if the sequence of runs is ended, if
not, the multiRun step controller asks for a new set of values from the sampler and the sequence is
restarted.

10

The job handler is currently capable to run different instances of the code in parallel and can also
handle codes that are internally multithreaded or using any form of message passing interface parallel
implementation.

RAVEN is also capable of plotting the simulation outcomes while the set of sampling is performed
and storing the data for later recovery.

4. LIMIT SURFACE SEARCH
As already mentioned, the key subject of this report is the development of convergence acceleration

schemes for the LS search algorithm. LS search is one of the adaptive (or smart) sampling strategies
developed within the RAVEN framework.

As briefly mentioned, the motivation of adaptive sampling strategies is that physic simulations are
often computationally expensive, time-consuming, and with a large number of uncertain parameters.
Thus, exploring the space of all possible simulation outcomes is almost infeasible using finite computing
resources. During simulation-based PRA analysis, it is important to discover the relationship between a
potentially large number of uncertain parameters and the response of a simulation using as few simulation
trials as possible.

This is a typical context where “goal” oriented sampling could be beneficial. Among the different
types of goal-oriented sampling, RAVEN uses a schema where few observations, obtained from the
model run, are used to build a simpler and faster evaluable mathematical representation of the model
(ROM). The ROM is then used to predict where further exploration of the input space could be most
informative. This information is used to select new locations in the input space for which a code run is
executed (see Figure 6). The new observations are used to update the ROM and this process iterates until,
within a certain metric, it is converged.

Figure 6. Example of limit surface schematic.

11

To summarize, in the case of the LS search, a ROM is used to determine which location in the input
space further observations is most informative, to establish the location of the LS, then code runs are
executed on those locations and the ROM updated. The process continues until the location of the LS is
established within a certain tolerance.

4.1 Limit Surface Concept and Properties
As already mentioned, this report describes the acceleration schemes implemented for the research of

the LS. [18] To properly explain these acceleration algorithms, it is necessary to analyze the concept of
the LSs, firstly, from a mathematical and, secondly, from a practical point of view.

Consider a dynamic system that is represented in the phase space by:

𝒚𝒚� = 𝑯𝑯(𝒙𝒙�, 𝒕𝒕,𝒑𝒑�) (1)

where

𝒚𝒚� = coordinate of the system in the phase space

𝒙𝒙�, 𝒕𝒕,𝒑𝒑� = independent variables that are separated, respectively, in spatial, temporal, and parameters’
independent variables (distinction between (𝒙𝒙�, 𝒕𝒕,𝒑𝒑�) is purely based on engineering
considerations).

Now it is possible to introduce the concept of “goal” function, 𝑪𝑪. 𝑪𝑪 is a binary function that, based on
the response of the system, can assume the value 0 (false) to indicate that the system is properly available
(e.g., system success) and 1 (true) to testify that the system is not available (e.g., failure of the system):

𝑪𝑪 = 𝑪𝑪(𝒚𝒚�,𝒙𝒙�, 𝒕𝒕,𝒑𝒑�) = 𝑪𝑪(𝑯𝑯(𝒙𝒙�, 𝒕𝒕,𝒑𝒑�),𝒙𝒙�, 𝒕𝒕,𝒑𝒑�) = 𝑪𝑪(𝒙𝒙�, 𝒕𝒕,𝒑𝒑�) (2)

To simplify the dissertation in this report and without loss of generality, assume that 𝑪𝑪 does not
depend on time (e.g., 𝑪𝑪 ← ∫ 𝒅𝒅𝒅𝒅𝒅𝒅𝒕𝒕𝒆𝒆𝒆𝒆𝒆𝒆

𝒕𝒕𝟎𝟎
(𝒙𝒙�, 𝒕𝒕,𝒑𝒑�)):

𝑪𝑪 = 𝑪𝑪(𝒙𝒙�,𝒑𝒑�) (3)

To simplify the mathematical description of the LS concept, it is possible to hypothesize that the
equation describing the PDF time evolution of the system in the phase space is of type Gauss-Codazzi (in
its Liouville’s derivation), which allows ensuring that all the stochastic phenomena in the system are
representable as PDFs in the uncertain domain. This allows combining the parametric space with the
initial condition space:

(𝒙𝒙�) ← (𝒙𝒙�,𝒑𝒑�)

𝑪𝑪(𝒙𝒙�) ← 𝑪𝑪(𝒙𝒙�,𝒑𝒑�)
(4)

This assumption is rarely violated, for example for those systems that present an intrinsic stochastic

behavior (e.g., the dynamic of a particle of dust in the air where it continuously and randomly interacts
with the molecules of air that “move” with different velocities and in different and random directions). In
most of the cases of interest in the safety analysis, the above-mentioned assumption is correct. A heuristic
approach to the characterization of system stochastic behaviors is reported in Ref. [6].

12

Under the above simplifications, it is possible to identify the region of the input space (𝑽𝑽) leading to a
specific outcome of the “goal” function. In particular, it can be defined, for example, the failure region 𝑽𝑽𝑭𝑭
as the region of the input space where 𝑪𝑪 = 𝟏𝟏:

𝑽𝑽𝑭𝑭 = {∀𝒙𝒙�|𝑪𝑪(𝒙𝒙�) = 𝟏𝟏} (5)

The definition of the complementary of the failure region is obviously:

𝑽𝑽𝑭𝑭𝒄𝒄 = {∀𝒙𝒙�|𝑪𝑪(𝒙𝒙�) = 𝟎𝟎} (6)

Its boundary is the named LS:

𝑳𝑳𝒔𝒔 = 𝝏𝝏𝑽𝑽𝑭𝑭 = 𝝏𝝏{∀𝒙𝒙�|𝑪𝑪(𝒙𝒙�) = 𝟏𝟏} (7)

The identification of the LS location is necessary to identify boundary regions for which the system
under consideration will or will not exceed certain FOMs (e.g., operative margins).

The LS location is extremely important for design optimization and issue mitigation and, in addition,
its informative content can be used to analyze the system to characterize its behavior from a stochastic
point of view. Consider 𝒙𝒙� ∈ 𝑽𝑽 and 𝒙𝒙�~𝑿𝑿�, where 𝒙𝒙� is the random variate realization of the stochastic
variable 𝑿𝑿�.

If 𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�) is the probability density function of 𝑿𝑿�, the failure probability of the system (𝑷𝑷𝑭𝑭) is:

𝑷𝑷𝑭𝑭 = �𝒅𝒅𝒙𝒙�𝑪𝑪(𝒙𝒙�)𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�)

𝑽𝑽
= � 𝒅𝒅𝒙𝒙�𝑪𝑪(𝒙𝒙�)𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�)

𝑽𝑽𝑭𝑭+𝑽𝑽𝑭𝑭
𝒄𝒄

 (8)

And, based on the definition given in Equations (4) and (5):

𝑷𝑷𝑭𝑭 = � 𝒅𝒅𝒙𝒙� 𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�)

𝑽𝑽𝑭𝑭
 (9)

Equations (8) and (9) are summarized by stating that the system failure probability is equivalent to

the probability of the system being in the uncertain subdomain (region of the input space) that leads to a
failure pattern. This probability is equal to the probability-weighted hyper-volume that is surrounded by
the LS.

It is beneficial for the reader to assess the LS concept through an example related to the safety of an
NPP.

As an example, consider a station black-out (SBO) scenario in an NPP. Suppose that the only
uncertain parameters are:

• 𝒕𝒕𝑭𝑭 : Temperature that would determine the failure of the fuel cladding

• 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫: Recovery time of the diesel generators (DGs) that can guarantee, through the emergency core
cooling system (ECCS), the removal of the decay heat.

13

And, the corresponding CDF (uniform) is:

𝒕𝒕𝑭𝑭~𝒑𝒑𝒑𝒑𝒑𝒑𝑻𝑻𝑭𝑭(𝑻𝑻𝑭𝑭) =

⎩
⎪
⎨

⎪
⎧ = 𝟎𝟎 𝒊𝒊𝒊𝒊 𝒕𝒕𝑭𝑭 < 𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎

=
𝟏𝟏

(𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎) = 𝚫𝚫𝒕𝒕𝑭𝑭
= 𝟎𝟎 𝒊𝒊𝒊𝒊 𝒕𝒕𝑭𝑭 > 𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎

 (10)

𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫~𝒑𝒑𝒑𝒑𝒑𝒑𝑹𝑹𝑹𝑹𝑫𝑫𝑫𝑫𝑫𝑫(𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫) =

⎩
⎪
⎨

⎪
⎧ = 𝟎𝟎 𝒊𝒊𝒊𝒊 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫 < 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎

=
𝟏𝟏

(𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎) = 𝚫𝚫𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫
= 𝟎𝟎 𝒊𝒊𝒊𝒊 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫 > 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎

 (11)

For simplicity, assume that the clad temperature is a quadratic function of the DG recovery time in an

SBO scenario:

𝒕𝒕 = 𝒕𝒕𝟎𝟎 + 𝜶𝜶 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝟐𝟐 (12)

and that the 𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎 > 𝒕𝒕𝟎𝟎 + 𝜶𝜶 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎
𝟐𝟐, 𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎 < 𝒕𝒕𝟎𝟎 + 𝜶𝜶 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎

𝟐𝟐.

The LS, failure region, and active part of the failure region (failure region with non-zero probability)
are illustrated in Figure 7 (in agreement with the above assumptions).

In this case, the transition/failure probability is evaluated as follows:

𝑷𝑷𝑭𝑭 = � 𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�)𝒅𝒅𝒙𝒙�
𝑽𝑽𝑭𝑭

= � 𝒑𝒑𝒑𝒑𝒑𝒑𝑻𝑻𝑭𝑭(𝑻𝑻𝑭𝑭)𝒅𝒅𝒕𝒕𝑭𝑭� 𝒑𝒑𝒑𝒑𝒑𝒑𝑹𝑹𝑹𝑹𝑫𝑫𝑫𝑫𝑫𝑫(𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫)
+∞

�𝒕𝒕𝑭𝑭−𝒕𝒕𝟎𝟎𝜶𝜶

+∞

𝟎𝟎
𝒅𝒅𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫

𝑷𝑷𝑭𝑭 = �
𝟏𝟏

𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎
𝒅𝒅𝒕𝒕𝑭𝑭 �

𝟏𝟏
𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎

𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎

�𝒕𝒕𝑭𝑭−𝒕𝒕𝟎𝟎𝜶𝜶

𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎

𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎

𝒅𝒅𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫

𝑷𝑷𝑭𝑭 =
𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎
𝚫𝚫𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫

+
𝟐𝟐𝜶𝜶

𝟑𝟑(𝚫𝚫𝒓𝒓𝒓𝒓𝑫𝑫𝑫𝑫𝑫𝑫𝚫𝚫𝒕𝒕𝑭𝑭)
� �

𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒕𝒕𝟎𝟎
𝜶𝜶

𝟑𝟑/𝟐𝟐

− �
𝒕𝒕𝑭𝑭𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒕𝒕𝟎𝟎

𝜶𝜶

𝟑𝟑/𝟐𝟐

�

(13)

This simple example is useful to understand how the LS is defined in a practical example (that is

analyzed numerically in the results section) and how the hyper-volume needs weighted with respect to the
probability in the uncertain domain. An example of the LS computed by RAVEN, using RELAP-7, is
shown in Figure 7.

14

Figure 7. Example of limit surface.

4.2 Reduced Order Models
As briefly and previously mentioned, a ROM, also called a surrogate model, is a mathematical

representation of a system, used to predict a selected FOM of a physical system.

The “training” is a process that, sampling the physical model represented by the high-fidelity
simulator (e.g., RELAP-7, RELAP5-3D, and PHISICS), is aimed to improve the prediction capability
(capability to predict the status of the system given a realization of the uncertain domain) of the ROM.
Two characteristics of these models are generally assumed (even if exceptions are possible):

1. The higher the number of realizations in the training sets, the higher the accuracy of the prediction
performed by the ROM is. This statement is true for most of the cases although some ROMs might be
subject to the over-fitting issues. The over-fitting phenomenon is not analyzed in this report, since its
occurrence highly depends on the algorithm type, and, hence, the problem needs to be analyzed for all
the large number of ROM types currently available in RAVEN. Currently, it is advisable that the user,
that chooses a particular ROM construction algorithm, consults the relative literature. As reported in
Section 6, in the near future, the RAVEN team is planning to address this problem, identifying and
implementing algorithms for the “automatic” calibration of all the ROMs’ input parameters.

2. The smaller the size of the input domain with respect to the variability of the system response, the
more likely the ROM is able to represent the system response space.

To provide a very simple idea of a ROM, assume that the final response space of a physical system is
governed by the transfer function 𝑯𝑯(𝒙𝒙�), that, from a practical point of view, represents the outcome of the
system, based on the initial conditions 𝒙𝒙�. Now, sample the domain of variability of the initial conditions 𝒙𝒙�
to create a set of 𝑵𝑵 realizations of the input and response space �𝒙𝒙�𝒊𝒊,𝑯𝑯(𝒙𝒙�𝒊𝒊)�, 𝒊𝒊 = 𝟏𝟏,𝑵𝑵, named “training”
set. Based on the data set generated, it is possible to construct a mathematical representation (𝑮𝑮(𝒙𝒙�):𝒙𝒙�𝒊𝒊) of
the real system 𝑯𝑯(𝒙𝒙�), which will approximate its response (see Figure 8):

𝑮𝑮(𝒙𝒙�):𝒙𝒙�𝒊𝒊 → 𝑮𝑮(𝒙𝒙�𝒊𝒊) ≅ 𝑯𝑯(𝒙𝒙�𝒊𝒊) (14)

15

Figure 8. Example of reduced order model representation of physical system (regression).

The ROMs reported above are generally named “regressors,” among which all the most common data
fitting algorithms are found (e.g., least-square for construction of linear models).

An important class of ROMs for the work presented hereafter is the one containing the so-called
“classifiers.” A classifier is a ROM that is capable of representing the system behavior from a binary
point of view (e.g., event happened/not happened or failure/success). It is a model (set of equations) that
identifies to which category an object belongs in the feature (input) space. Referring to the example that
brought to Equation (14), a classifier is represented as follows (see Figure 9):

𝑮𝑮(𝒙𝒙�):𝒙𝒙�𝒊𝒊 → 𝑮𝑮(𝒙𝒙�𝒊𝒊) ≅ 𝑪𝑪(𝑯𝑯(𝒙𝒙�𝒊𝒊)) (15)

The function 𝑪𝑪(𝑯𝑯(𝒙𝒙�𝒊𝒊) = 𝒚𝒚�) is the so-called “goal” function that is able to recast the response of the
system 𝑯𝑯(𝒙𝒙�) into a binary form (e.g., failure/success). As an example, referring to Figure 9, the “goal”
function would be:

𝑪𝑪(𝒚𝒚�) = �𝟏𝟏𝟎𝟎
𝒊𝒊𝒊𝒊 𝒚𝒚� > 𝟏𝟏.𝟎𝟎
𝒊𝒊𝒊𝒊 𝒚𝒚� ≤ 𝟏𝟏.𝟎𝟎 (16)

Figure 9. Example of reduced order model representation of physical system (classifier).

16

Hence, the ROM of type classifier 𝑮𝑮(𝒙𝒙�) will operate in the space transformed through the “goal”
function 𝑪𝑪(𝒚𝒚�).

The classifiers and regressors currently available in RAVEN are organized in two main classes:

1. Model-based algorithms

2. Data-based algorithms.

In the first class, the created ROM aims to approximate the response of the system as a function of the
input parameters. These algorithms construct a functional representation of the system. In RAVEN there
are several different types of model-based algorithms, such as support vector machines (SVMs), Kriging-
based interpolators, discriminant-based models, and polynomial chaos.

On the other side, data-based algorithms do not build a response-function-based ROM but classify or
predict the response of the system from the neighborhood graph constructed from the training data,
without any dependencies on a particular prediction model.

These algorithms directly build a neighborhood structure as the ROM (e.g., a relaxed Gabriel graph)
on the initial training data. In RAVEN, there are several different types of data-based algorithms, such as
nearest neighbors and decision trees.

4.3 Limit Surface Search Algorithm
Determination of the LS location is extremely challenging, depending on the particular

physics/phenomena that are investigated. To identify the real location of the LS, evaluation of system
responses is needed, through the high-fidelity code (e.g., RELAP-7, and RELAP5-3D), in the full domain
of uncertainty (infinite number of combinations of uncertainties represented by the respective PDFs).
Obviously, this is not a feasible approach, and a reasonable approximation is to locate the LS on a
Cartesian N-D grid, in the uncertain domain.

In reality, the location of the LS is not exactly determined but rather bounded. The algorithm
determines the set of grid nodes between which the transition 0/1 of the “goal” function happens. This set
is also classified with respect to the value of the “goal” function. With reference to Figure 10, for
example, green is used for grid nodes with a “goal” function that equals 0 and red when the “goal”
function equals 1.

Figure 10. Example of limit surface search evaluation grid.

17

Each evaluation of the “goal” function in one of the grid nodes implies the evaluation of the
high-fidelity code (e.g., RELAP-7) for the corresponding set of entry in the uncertain space. As already
mentioned, evaluation of the high-fidelity code is computationally expensive and, in order to identify the
LS, RAVEN should appraise each point in the N-D grid covering the uncertainty space. Discretization
depends on the accuracy requested by the user. In most cases, this approach is not feasible and,
consequentially, the process needs accelerated by using “predicting” methods that, in RAVEN, are
represented by the employment of supervised learning algorithms.

What RAVEN implements is, in reality, what is commonly referred to as an active learning process
that ultimately results in training of a ROM of type classifier capable of predicting the outcome of the
“goal” function for any given point of the uncertain space.

In an active learning process, a supervised learning algorithm is combined with criteria to choose the
next node in the N-D grid that needs explored, using the high-fidelity physical model. This process is
repeated until, under a particular metric, the prediction capabilities of the supervised learning algorithm
do not improve by further increasing the training set.

In more detail, the iterative scheme could be summarized through the following steps:

1. A limited number of points in the uncertain space {𝒙𝒙�𝒌𝒌} are selected via one of the forward sampling
strategies (e.g., stratified or MC).

2. The high-fidelity code is used to compute the status of the system for the set of points in the input set:
{𝒙𝒙�(𝒕𝒕)}𝒌𝒌 = 𝑯𝑯({𝒙𝒙�}𝒌𝒌, 𝒕𝒕).

3. The “goal” function is evaluated at the phase space coordinate of the system: {𝒄𝒄}𝒌𝒌 = 𝑪𝑪({𝒙𝒙�(𝒕𝒕)}𝒌𝒌).

4. The set of pairs {(𝒙𝒙�, 𝒄𝒄)𝒌𝒌} are used to train a ROM of type classifier, 𝑮𝑮({𝒙𝒙�}𝒌𝒌).

5. The ROM classifier is used to predict the values of the “goal” function for all the 𝑵𝑵 nodes of the N-D
grid in the domain space:

𝑮𝑮�{𝒙𝒙�}𝒋𝒋� ≈ {𝒄𝒄}𝒋𝒋, 𝒋𝒋 = 𝟏𝟏, … ,𝑵𝑵 (17)

6. The values of the “goal” function are used to determine the LS location based on the change of values

of {𝒄𝒄}𝒋𝒋:

{𝒄𝒄}𝒋𝒋 → 𝝏𝝏𝑽𝑽𝑭𝑭 (18)

7. A new point is chosen to increase the training set and a new pair is generated.

8. The procedure is repeated starting from Step 3 until convergence is achieved. The convergence is
achieved when there are no changes in the location of the LS after a certain number of consecutive
iterations.

The iteration scheme is graphically shown in Figure 11.

18

Figure 11. Limit surface search conceptual scheme.

It is important to notice that there is an additional requirement regarding the LS search algorithm. It is
required that the LS location stays constant for a certain number (user-defined) of consecutive iterations.
The reason for this choice is determine by the attempt to mitigate the effect of the build of non-linear bias
in the searching pattern. Indeed, the searching algorithm might focus too much on a certain region of the
LS while putting too few points in other zones and completely hiding undiscovered topological features
of the LS.

Regarding the strategy to choose the nodes on the N-D grid that needs evaluated in the iterative
process for the LS identification, currently RAVEN employs a metric based on the distance between the
predicted LS and the evaluations already performed. The points on the LS are ranked based on the
distance from the closest training point already explored (the larger is the distance the higher is the score
for the candidate point), and based on its persistence (the larger is the number of time the prediction of the
“goal” function for that point have changed the higher is the score).

Since this approach creates a queue of ranked candidates, it could be used also in the parallel
implementation of the algorithm. When several training points are run in parallel, it is possible that the
evaluation of one additional point does not alter dramatically the location of the LS. Consequently, it is
possible that the candidate with the highest score is already being submitted for evaluation and possibly
the simulation is not yet completed. In this case, to avoid submitting the same evaluation point twice,
RAVEN will search among all the ranked candidates (in descending order) for the one that was not
submitted for evaluation. Even if it is extremely unlikely that all the candidates were submitted, in this
remote event, RAVEN will choose the next point employing an MC strategy.

19

4.4 Acceleration Schemes
This subsection addresses the acceleration schemes that were implemented. All of these algorithms

are based on the devolvement of some propaedeutic capabilities, within the RAVEN framework, that are
addressed in Subsection Error! Reference source not found..

4.4.1 Propaedeutic Development
As already mentioned, the methodologies addressed in the following subsections are based on the

development of some additional capabilities in the RAVEN code. Three main developments were crucial
for development of the acceleration schemes:

• Grid entity

• Limit surface post-processor

• Limit surface integration post-processor.

The following subsections briefly explain these developments.

4.4.1.1 Grid Entity. Implementation of a grid entity, within the RAVEN framework, was very
important to develop the acceleration algorithms later addressed in this report. In the past, RAVEN did
not have an object that was fully dedicated in handling N-D Cartesian grids, but, every component of the
code in need of such a structure was internally constructing its own. This approach created a certain level
of redundancy and made the integration/interaction of multiple grid-based objects complex (e.g., LS
search, factorial, and LS post-processor). For these reasons, development of a single object, capable of
handling all the common needs regarding grid handling, was pursued and accomplished. The new entity
can handle Cartesian and sparse grid.

4.4.1.2 Limit Surface Post-processor. Another important development is represented by
implementation of a post-processor for computing the LS. This post-processor can be used to compute the
LS, based on already-generated data. For example, it is generally used to generate the LS at the end of a
non-adaptive sampling strategy (e.g., MC or factorial).

In addition, to remove redundancy, it is also directly used by the LS search sampling strategy.

4.4.1.3 Limit Surface Integration Post-processor. As already mentioned, the hyper-volume,
which is bounded by the LS, is a measure of the probability of the event that is modeled through the
“goal” function. For this reason, a post-processor was developed to compute the weighted (or not) integral
of the LS.

The computation of the LS integral is currently performed employing an MC integration scheme.

4.4.2 Acceleration through Multi-grid Approach
The location of the LS, being a numerical iterative process, can be known given a certain tolerance.

As already mentioned, the LS search is done by constructing an evaluation grid, on which the acceleration
ROM is inquired. The tolerance of the iterative determines how the evaluation grid is discretized. Before
addressing the new acceleration scheme, it is important to introduce some concepts on the employed
numerical process.

20

Assume that each of D dimensions of the uncertain domain is discretized with the same number of
equally-spaced nodes N (see Figure 12), with discretization size indicated by 𝒉𝒉𝒊𝒊. Hence, the Cartesian
grid contains ND individual nodes, indexed through the multi-index vector 𝒋𝒋̅ = (𝒋𝒋𝒊𝒊=𝟏𝟏→𝑫𝑫), 𝒋𝒋𝒊𝒊 ≤ 𝑵𝑵∀𝒊𝒊.
Introducing the vectors 𝑰𝑰� = (𝟏𝟏, … ,𝟏𝟏) and 𝑵𝑵� = (𝑵𝑵, … ,𝑵𝑵), the “goal” function is expressed on this N-D
grid as:

𝑪𝑪(𝒙𝒙�) = �𝝋𝝋𝒋𝒋̅(𝒙𝒙�)𝑪𝑪�𝒙𝒙�𝒋𝒋̅�
𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
 (19)

where

𝝋𝝋𝒋𝒋 ̅= characteristic function of the hyper-volume 𝜴𝜴𝒋𝒋̅ surrounding the node 𝒙𝒙�𝒋𝒋̅:

𝝋𝝋𝒋𝒋̅(𝒙𝒙�) = �
𝟏𝟏, 𝒊𝒊𝒊𝒊 𝒙𝒙� ∈ 𝜴𝜴𝒋𝒋̅
𝟎𝟎, 𝒊𝒊𝒊𝒊 𝒙𝒙� ∉ 𝜴𝜴𝒋𝒋̅

 (20)

where

𝜴𝜴𝒋𝒋̅ = ��𝒙𝒙𝒋𝒋𝒊𝒊 −
𝒉𝒉𝒊𝒊
𝟐𝟐

,𝒙𝒙𝒋𝒋𝒊𝒊 +
𝒉𝒉𝒊𝒊
𝟐𝟐 �

𝑫𝑫

𝒊𝒊=𝟏𝟏

 (21)

Figure 12. Discretization grid.

The probability of the uncertain parameters is expressed as:

21

𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�) = �𝝋𝝋𝒋𝒋̅(𝒙𝒙�)𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅�
𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
 (22)

Following the approach briefly explained in Subsection 4.1, the probability of the event (e.g., failure)

could be expressed as:

𝑷𝑷𝑭𝑭 = ��𝒉𝒉𝒊𝒊

𝑫𝑫

𝒊𝒊=𝟏𝟏

���𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅�𝑪𝑪�𝒙𝒙�𝒋𝒋̅�
𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
� (23)

Under certain assumptions [18], the concept of active hyper-volume 𝑽𝑽𝑨𝑨 as the region of the input

space identified by the support of the uncertain parameters’ probability density functions 𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�) could
be introduced; Equation (23) is re-casted, using a Taylor expansion, as follows:

𝑷𝑷𝑭𝑭 = �𝑪𝑪(𝒙𝒙�)𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�(𝒙𝒙�)𝒅𝒅𝒙𝒙�

𝑽𝑽
= � 𝑪𝑪(𝒙𝒙�) ��𝝋𝝋𝒋𝒋̅(𝒙𝒙�)�𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅� + �

𝝏𝝏𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�
𝝏𝝏𝒙𝒙𝒊𝒊

�
𝒙𝒙�𝒋𝒋̅
�𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋𝒊𝒊�

𝑫𝑫

𝒊𝒊=𝟏𝟏

�
𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
�

𝑽𝑽𝑨𝑨
𝒅𝒅𝒙𝒙� (24)

And, considering the evaluation grid as:

𝑷𝑷𝑭𝑭 = � � 𝑪𝑪(𝒙𝒙�)�𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅�+ �
𝝏𝝏𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�
𝝏𝝏𝒙𝒙𝒊𝒊

�
𝒙𝒙�𝒋𝒋̅
�𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋𝒊𝒊�

𝑫𝑫

𝒊𝒊=𝟏𝟏

�
𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋 ̅∈ 𝑽𝑽𝑨𝑨

𝒅𝒅𝒙𝒙� (25)

At this point, it is possible to label, in the active hyper-volume, the subdomain identified by the nodes

where the “goal” function 𝑪𝑪(𝒙𝒙�) changes its value (the frontier nodes between the region where 𝑪𝑪(𝒙𝒙�) = 𝟏𝟏
and 𝑪𝑪(𝒙𝒙�) = 𝟎𝟎) 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭.

Consequentially, it is possible to identify the subdomains in which the “goal” function 𝑪𝑪(𝒙𝒙�) is equal
to 0 (𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟎𝟎 ∉ 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭) and 1 (𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟏𝟏 ∉ 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭):

� � 𝑪𝑪(𝒙𝒙�)�𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅�+ �
𝝏𝝏𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�
𝝏𝝏𝒙𝒙𝒊𝒊

�
𝒙𝒙�𝒋𝒋̅
�𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋𝒊𝒊�

𝑫𝑫

𝒊𝒊=𝟏𝟏

�
𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐
𝒅𝒅𝒙𝒙�

𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋̅ ∈ 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟎𝟎

= 𝟎𝟎 (26)

� � 𝑪𝑪(𝒙𝒙�)�𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅� +�
𝝏𝝏𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�
𝝏𝝏𝒙𝒙𝒊𝒊

�
𝒙𝒙�𝒋𝒋̅
�𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋𝒊𝒊�

𝑫𝑫

𝒊𝒊=𝟏𝟏

�𝒅𝒅𝒙𝒙�
𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋̅ ∈ 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟏𝟏

= � � �𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅� + �
𝝏𝝏𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�
𝝏𝝏𝒙𝒙𝒊𝒊

�
𝒙𝒙�𝒋𝒋̅
�𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋𝒊𝒊�

𝑫𝑫

𝒊𝒊=𝟏𝟏

�𝒅𝒅𝒙𝒙�
𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋̅∈𝑽𝑽𝑨𝑨∩𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟏𝟏

(27)

22

Equation (25) is now expressed as:

𝑷𝑷𝑭𝑭 = � ��𝒉𝒉𝒊𝒊

𝑫𝑫

𝒊𝒊=𝟏𝟏

�𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅�
𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋̅ ∈ 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟏𝟏

+ 𝑶𝑶�𝒉𝒉𝑵𝑵+𝟏𝟏�

+ � � 𝑪𝑪(𝒙𝒙�)�𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅� + �
𝝏𝝏𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�
𝝏𝝏𝒙𝒙𝒊𝒊

�
𝒙𝒙�𝒋𝒋̅
�𝒙𝒙𝒊𝒊 − 𝒙𝒙𝒋𝒋𝒊𝒊�

𝑫𝑫

𝒊𝒊=𝟏𝟏

�𝒅𝒅𝒙𝒙�
𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝒙𝒙�𝒋𝒋̅−𝒉𝒉�/𝟐𝟐

𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋̅ ∈ 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭

(28)

As inferred from Equation (28), the process is bounded if the surface-area-to-volume ratio (amount of

surface area per unit volume) is in favor of the volume:

� ��𝒉𝒉𝒊𝒊

𝑫𝑫

𝒊𝒊=𝟏𝟏

�𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅�
𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋̅ ∈ 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟏𝟏

 ≫ � �� 𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿��𝒙𝒙�𝒋𝒋̅�𝒅𝒅𝒙𝒙�
𝒙𝒙�𝒋𝒋̅−

𝒉𝒉�
𝟐𝟐

𝒙𝒙�𝒋𝒋̅−
𝒉𝒉�
𝟐𝟐

�
𝑵𝑵�

𝒋𝒋=̅𝑰𝑰�
𝒙𝒙�𝒋𝒋̅ ∈ 𝑽𝑽 𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭

 (29)

If the grid is built in the transformed space of probability (i.e., replacing the measure 𝒅𝒅𝒙𝒙� with

𝒅𝒅𝝁𝝁� = 𝒑𝒑𝒑𝒑𝒑𝒑𝑿𝑿�𝒅𝒅𝒙𝒙�), the condition expressed in Equation (29) is reduced:

𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 ∈ 𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝑪𝑪(𝒙𝒙�)=𝟏𝟏 ≫ # 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 ∈ 𝑽𝑽 𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭 (30)

This means that error is bounded by the total probability contained in the cells on the frontier of the
LS.

Based on this derivation, it is clear how important it is to keep the content of the total probability on
the frontier of the LS as low as possible, and simultaneously, increase the importance of the volume of the
failure/event region as much as possible (to improve the surface-area-to-volume ratio).

In order to do that, the step size in probability should be significantly reduced (𝒉𝒉𝒊𝒊
𝒑𝒑 → 𝟎𝟎+). Even if

this is theoretically feasible, it is computational inapplicable. To approach a similar result, it is possible to
learn from other numerical methods that use the technique of adaptive meshing for the resolution of the
partial differential equation system (e.g., finite element methods).

For this reason, an acceleration scheme was designed and developed employing a multi-grid
approach. The main idea, it is to re-cast the iterative process in two different subsequential steps. Firstly,
performing the LS search on a coarse evaluation grid, and once converged, adaptively refining the cells
that lie on the frontier of the LS (𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭) and, consequentially, converging on the new refined grid.

The iteration scheme is graphically shown in Figure 13.

23

Figure 13. Multi-grid limit surface search scheme.

In more detail, the iterative scheme could be summarized through the following steps:

1. The user specifies two tolerances in probability (CDF): 𝜸𝜸𝒈𝒈=𝟏𝟏 for the initial coarse grid and 𝜸𝜸𝒈𝒈=𝟐𝟐 for
the refined grid, where 𝜸𝜸𝒈𝒈=𝟏𝟏 > 𝜸𝜸𝒈𝒈=𝟐𝟐.

2. Following Equation (21), the initial coarse evaluation grid 𝜴𝜴
𝟏𝟏 is constructed (𝑵𝑵𝒈𝒈=𝟏𝟏 total nodes). The

discretization of this grid is done to have cells with a content of probability equal to 𝜸𝜸𝒈𝒈=𝟏𝟏.

3. A limited number of points in the uncertain space {𝒙𝒙�𝒌𝒌} are selected via one of the forward sampling
strategies (e.g., stratified or MC).

4. The high-fidelity code is used to compute the status of the system for the set of points in the input set:
{𝒙𝒙�(𝒕𝒕)}𝒌𝒌 = 𝑯𝑯({𝒙𝒙�}𝒌𝒌, 𝒕𝒕).

5. The “goal” function is evaluated at the phase space coordinate of the system: {𝒄𝒄}𝒌𝒌 = 𝑪𝑪({𝒙𝒙�(𝒕𝒕)}𝒌𝒌).

6. The set of pairs {(𝒙𝒙�, 𝒄𝒄)𝒌𝒌} are used to train a ROM of type classifier, 𝑮𝑮({𝒙𝒙�}𝒌𝒌).

24

7. The ROM classifier is used to predict the values of the “goal” function for all the 𝑵𝑵 nodes of the N-D
grid in the domain space: 𝑮𝑮�{𝒙𝒙�}𝒋𝒋� ≈ {𝒄𝒄}𝒋𝒋, 𝒋𝒋 = 𝟏𝟏, … ,𝑵𝑵𝒈𝒈=𝟏𝟏.

8. The values of the “goal” function are used to determine the LS location based on the change of values
of {𝒄𝒄}𝒋𝒋 → 𝝏𝝏𝑽𝑽𝑭𝑭.

9. A new point is chosen to increase the training set and a new pair is generated.

10. The procedure is repeated starting from Step 5 until convergence is achieved on grid 𝜴𝜴
𝒈𝒈. The

convergence is reached when there are no changes in the location of the LS after a certain number of
consecutive iterations (user-defined).

11. When the convergence is achieved on the coarse grid 𝜴𝜴
𝒈𝒈=𝟏𝟏, all the cells that lie on the frontier of the

LS (𝑽𝑽𝑨𝑨 ∩ 𝑽𝑽𝝏𝝏𝑽𝑽𝑭𝑭) are refined to contain an amount of probability equal to 𝜸𝜸𝒈𝒈=𝟐𝟐.

12. Steps 7 through 9 are performed based on the new refined grid. Finally, the process starts again by
performing Steps 5 through 10, until the convergence is achieved in the refined grid.

As shown in Figure 13, the algorithm consists in searching the location of the LS proceeding with
subsequential refinement of the subdomain, in the active space, that contains the LS. In this way, the
computational burden is kept as low as possible. In addition, another advantage of this approach is that,
since the refinement grid represents a constrained domain, the subsequential ROM training process can be
regularized, since the LS between an iteration and the other can move, at maximum, within the refinement
domain.

5. TEST CASES
To test the validity of the acceleration schemes, some test cases were designed and employed. For all

test cases, the LS search is performed employing the algorithm that was presented in the June 2014
milestone, the new acceleration schemes and a brute force approach where an MC sampling is used to
generate a set of data that are used for a posteriori construction of the LS.

It is worth mentioning that, even if in all the test cases presented hereafter, the independent variables
defining the input space are associated with PDFs this is not required for application of the LS concept
and the search methodologies presented in this report.

When a probability is not associated with the input space, the LS search is simply a parametric search
of the input space where the system satisfies certain constrains (e.g., does not fail under the accident
scenario considered).

The reason why all tests presented in this report possess a stochastic characterization of the input
space is because one of the comparison metrics, between the different search methodologies, taken in
account is the probability of the binary event represented by the “goal” function (e.g., the probability of
failure).

In the following subsections, three different examples are presented; the first two are based on
analytical models using the RAVEN “external model” API, presented in Subsection 3.2.2.3, and the third
is based on a pressurized water reactor (PWR) SBO employed with RELAP-7.

25

5.1 Simple Three-Dimensional Analytical Test
As previously mentioned, the first test was performed using the RAVEN “external model.” The

response of the system is modeled with the following simple equation:

𝒚𝒚 = 𝒙𝒙𝟏𝟏𝟐𝟐 + 𝒙𝒙𝟏𝟏 ∗ 𝒙𝒙𝟐𝟐 ∗ 𝒙𝒙𝟑𝟑 (31)

where

𝒚𝒚 = outcome of the system

𝒙𝒙𝟏𝟏, 𝒙𝒙𝟐𝟐, and 𝒙𝒙𝟑𝟑 = independent variables.

It is assumed that the independent variables are affected by uncertainties that are stochastically
modeled as follows:

𝑿𝑿𝟏𝟏 ~ 𝑵𝑵(𝝁𝝁𝟏𝟏,𝝈𝝈𝟏𝟏); 𝒑𝒑𝒑𝒑𝒑𝒑(𝑿𝑿𝟏𝟏 = 𝒙𝒙𝟏𝟏) =
𝟏𝟏

𝝈𝝈𝟏𝟏√𝟐𝟐𝝅𝝅
𝒆𝒆
−(𝒙𝒙𝟏𝟏−𝝁𝝁𝟏𝟏)𝟐𝟐

𝟐𝟐𝝈𝝈𝟏𝟏
𝟐𝟐 𝟎𝟎.𝟎𝟎 ≤ 𝒙𝒙𝟏𝟏 ≤ 𝟏𝟏.𝟎𝟎

𝝁𝝁𝟏𝟏 = 𝟎𝟎.𝟓𝟓 𝝈𝝈𝟏𝟏 = 𝟎𝟎.𝟏𝟏
 (32)

𝑿𝑿𝟐𝟐 ~ 𝑵𝑵(𝝁𝝁𝟐𝟐,𝝈𝝈𝟐𝟐); 𝒑𝒑𝒑𝒑𝒑𝒑(𝑿𝑿2 = 𝒙𝒙2) =
𝟏𝟏

𝝈𝝈𝟏𝟏√𝟐𝟐𝝅𝝅
𝒆𝒆
−(𝒙𝒙𝟐𝟐−𝝁𝝁𝟐𝟐)𝟐𝟐

𝟐𝟐𝝈𝝈𝟐𝟐
𝟐𝟐 𝟎𝟎.𝟎𝟎 ≤ 𝒙𝒙𝟐𝟐 ≤ 𝟒𝟒.𝟎𝟎

𝝁𝝁𝟐𝟐 = 𝟐𝟐.𝟎𝟎 𝝈𝝈𝟐𝟐 = 𝟎𝟎.𝟐𝟐
 (33)

𝑿𝑿𝟑𝟑 ~ 𝑼𝑼(𝒂𝒂,𝒃𝒃); 𝒑𝒑𝒑𝒑𝒑𝒑(𝑿𝑿𝟑𝟑) = �
𝟏𝟏

𝒃𝒃 − 𝒂𝒂
𝒂𝒂 ≤ 𝒙𝒙𝟑𝟑 ≤ 𝒃𝒃

𝟎𝟎 𝒙𝒙𝟑𝟑 < 𝒂𝒂, 𝒙𝒙𝟑𝟑 > 𝒃𝒃
𝒂𝒂 = 𝟏𝟏.𝟎𝟎 𝒃𝒃 = 𝟒𝟒.𝟎𝟎

 (34)

For this particular case, the “goal” function represents a threshold phenomenon:

𝑪𝑪(𝒚𝒚) = �+𝟏𝟏−𝟏𝟏
 𝒊𝒊𝒊𝒊 𝒚𝒚 > 𝟓𝟓.𝟎𝟎
 𝒊𝒊𝒊𝒊 𝒚𝒚 ≤ 𝟓𝟓.𝟎𝟎 (35)

To compare the new multi-grid acceleration scheme and previous approach, the convergence criteria

in Table 1 are used.

Table 1. Simple three-dimensional analytical test: Limit surface search convergence criteria.
Parameter Multi-grid LS Search Fixed-grid LS Search

Persistency 25 25
Tolerance (CDF) 2.7E−5 1.E−6*
Multi-grid tolerance (CDF) 1.E−6* —
*Final probability convergence tolerance.

The ROM used for accelerating the convergence is an SVM classifier with a kerned based on radial

basis function.

In addition, a 100.000 samples MC is run; subsequentially, the a-posteriori LS is computed.

26

For all three employed sampling strategies, the final probability is computed using the LS integral
post-processor explained in Subsection 4.4.1.

Figure 14 and Figure 15 show the location of the samples and final LS for the multi-grid approach.
There are no figures shown for the LS search method as they are similar to figures shown for the previous
LS search method.

Figure 14. Samples’ location in multi-grid limit
surface approach (three-dimensional analytical test).

Figure 15. Limit surface in multi-grid limit surface
approach (three-dimensional analytical test).

Table 2 compares the multi-grid and fixed-grid approaches. It is noticeable that the new acceleration

scheme is brought to a speed-up factor (in terms of number of iterations and, consequentially, of runs) of
approximately 2.6 (i.e., the multi-grid approach converged 2.6 times faster than the fixed-grid one).

Table 2. Multi-grid and fixed-grid comparison (three-dimensional analytical test).
Parameter Multi-grid LS Search Fixed-grid LS Search Speed-up Factor

Number of iterations 1,951 5,085 Approximately 2.6
Probability 2.8894E−02 2.8894E−02 —
Probability MC 3.2750E−02 — —

The probability computed with the LS obtained for both approaches is the same; this is another

indication that both methodologies converge on the same solution (the converged LS location is exactly
the same).

27

5.2 Two-Dimensional Test Case in Presence of Failure Islands
In determining failure boundaries, the most challenging problem is identifying failure regions that are

represented by a convex set of points and, thus, that completely isolate a portion of the uncertain domain.
In safety analysis and PRA analysis, these types of boundaries are named failure “islands.” To test the
new multi-grid algorithm with such a challenging problem, another analytical test was designed, using,
again, the RAVEN “external model” API. The response of the system is modeled with the following
simple equation:

𝒚𝒚 = 𝒙𝒙𝟏𝟏𝟐𝟐 + 𝒙𝒙𝟐𝟐𝟐𝟐 (36)

where

𝒚𝒚 = outcome of the system

𝒙𝒙𝟏𝟏and 𝒙𝒙𝟐𝟐 = independent variables.

It is assumed that the independent variables are affected by uncertainties that are stochastically
modeled as follows:

𝑿𝑿𝟏𝟏 ~ 𝑵𝑵(𝝁𝝁𝟏𝟏,𝝈𝝈𝟏𝟏); 𝒑𝒑𝒑𝒑𝒑𝒑(𝑿𝑿𝟏𝟏 = 𝒙𝒙𝟏𝟏) =
𝟏𝟏

𝝈𝝈𝟏𝟏√𝟐𝟐𝝅𝝅
𝒆𝒆
−(𝒙𝒙𝟏𝟏−𝝁𝝁𝟏𝟏)𝟐𝟐

𝟐𝟐𝝈𝝈𝟏𝟏
𝟐𝟐 −𝟓𝟓.𝟎𝟎 ≤ 𝒙𝒙𝟏𝟏 ≤ 𝟓𝟓.𝟎𝟎

𝝁𝝁𝟏𝟏 = 𝟎𝟎.𝟎𝟎 𝝈𝝈𝟏𝟏 = 𝟏𝟏.𝟓𝟓
 (37)

𝑿𝑿𝟐𝟐 ~ 𝑵𝑵(𝝁𝝁𝟐𝟐,𝝈𝝈𝟐𝟐); 𝒑𝒑𝒑𝒑𝒑𝒑(𝑿𝑿2 = 𝒙𝒙2) =
𝟏𝟏

𝝈𝝈𝟏𝟏√𝟐𝟐𝝅𝝅
𝒆𝒆
−(𝒙𝒙𝟐𝟐−𝝁𝝁𝟐𝟐)𝟐𝟐

𝟐𝟐𝝈𝝈𝟐𝟐
𝟐𝟐 −𝟔𝟔.𝟎𝟎 ≤ 𝒙𝒙𝟐𝟐 ≤ 𝟔𝟔.𝟎𝟎

𝝁𝝁𝟐𝟐 = 𝟎𝟎.𝟎𝟎 𝝈𝝈𝟐𝟐 = 𝟏𝟏.𝟐𝟐
 (38)

For this particular case, the “goal” function represents a two-threshold phenomenon:

𝑪𝑪(𝒚𝒚) = �+𝟏𝟏−𝟏𝟏
 𝒊𝒊𝒊𝒊 𝟎𝟎.𝟓𝟓 < 𝒚𝒚 ≤ 𝟏𝟏.𝟎𝟎

𝒊𝒊𝒊𝒊 𝒚𝒚 ≤ 𝟓𝟓.𝟎𝟎 (39)

To compare the new multi-grid acceleration scheme and previous approach, the convergence criteria

in Table 3 are used.

Table 3. Two-dimensional analytical test in presence of failure islands: Limit surface search convergence
criteria.

Parameter Multi-grid LS Search Fixed-grid LS Search
Persistency 20 20
Tolerance (CDF) 5.625E−6 6.25E−7*
Multi-grid tolerance (CDF) 6.25E−7* —
*Final probability convergence tolerance.

The ROM used for accelerating the convergence is an SVM classifier with a kerned based on radial

basis function.

In addition, a 100.000 samples MC is run; subsequentially, the a-posteriori LS is computed.

28

For all three employed sampling strategies, the final probability is computed using the LS integral
post-processor mentioned in Subsection 4.4.1.

Figure 16 and Figure 17 show the location of the samples and final LS for the multi-grid approach.
There are no figures shown for the LS search method as they are similar to figures shown for the previous
LS search method.

Figure 16. Samples’ location in multi-grid limit
surface approach (two-dimensional analytical test
in presence of failure islands).

Figure 17. Limit surface in multi-grid limit surface
approach (two-dimensional analytical test in
presence of failure islands).

Table 4 compares the multi-grid and fixed-grid approaches. The number of iterations for both

methodologies testifies how challenging the identification of failure “islands” is. Anyhow, it is noticeable
that the new acceleration scheme is brought to a speed-up factor of approximately2.4 (i.e., the multi-grid
approach converged 2.4 times faster than the fixed-grid one).

Table 4. Multi-grid and fixed-grid comparison (two-dimensional analytical test in presence of failure
islands).

Parameter Multi-grid LS Search Fixed-grid LS Search Speed-up Factor
Number of iterations 5,300 12,354 Approximately 2.4
Probability 1.1241E−01 1.1241E−01 —
Probability MC 1.1253E−01 — —

The probability computed with the LS obtained for both approaches is the same; this is another

indication that both methodologies converge on the same solution (the converged LS location is exactly
the same). In addition, the difference between the probabilities computed with the MC approach and LS
search approach is within the 0.1%.

29

5.3 Pressurized Water Reactor Station Black-out Demo Using
RELAP-7 as System Code

The previous examples demonstrated the functionality of the multi-grid LS search on analytical tests.
It is important to assess how the new algorithm reacts to a real safety case. For this purpose, a PWR
model was built, at INL, in the thermal-hydraulic code RELAP-7. The model is set up based on the
parameters specified in the Organization for Economic Cooperation and Development main steam line
break benchmark problem. [19] The reference design for the Organization for Economic Cooperation and
Development main steam line break benchmark problem is derived from the reactor geometry and
operational data of the Three Mile Island-1 NPP, which is a 2,772-MW, two-loop PWR (see the system
scheme shown in Figure 18).

Figure 18. Scheme of Three Mile Island pressurized water reactor benchmark.

The simulated scenario is a simplified SBO accident.

To reach a steady-state condition, the simulation is run for 500 seconds without any change in its
internal parameters. The reference scenario is summarized as follows (see Figure 19):

• At t = 500 s, the external initiating event (e.g., earthquake) causes a loss of outside power event. The
reactor successfully scrams, AC power is provided by the DGs and the ECCS keeps the reactor core
cool.

• At t1 = 2000 s, the DGs, which were providing emergency AC power, become unavailable. Without
AC power, the ECCS is disabled as well and the core temperature increases. When AC power is
recovered (t2), through either DGs or primary grid recovery, ECCS capabilities are restored and core
temperature starts to decrease.

30

Figure 19. Example of loss of outside power scenario followed by diesel generators’ failure using
RELAP-7 code.

It is assumed that the DGs’ failure and ECCS recovery times are affected by uncertainties that are
stochastically modeled as follows:

𝑿𝑿𝟏𝟏 ~ 𝑵𝑵(𝝁𝝁𝟏𝟏,𝝈𝝈𝟏𝟏); 𝒑𝒑𝒑𝒑𝒑𝒑(𝑿𝑿𝟏𝟏 = 𝒙𝒙𝟏𝟏) =
𝟏𝟏

𝝈𝝈𝟏𝟏√𝟐𝟐𝝅𝝅
𝒆𝒆
−(𝒙𝒙𝟏𝟏−𝝁𝝁𝟏𝟏)𝟐𝟐

𝟐𝟐𝝈𝝈𝟏𝟏
𝟐𝟐 𝟎𝟎.𝟎𝟎 ≤ 𝒙𝒙𝟏𝟏 ≤ 𝟖𝟖,𝟎𝟎𝟎𝟎𝟎𝟎.𝟎𝟎

𝝁𝝁𝟏𝟏 = 𝟒𝟒,𝟎𝟎𝟎𝟎𝟎𝟎.𝟎𝟎 𝝈𝝈𝟏𝟏 = 𝟏𝟏,𝟎𝟎𝟎𝟎𝟎𝟎.𝟎𝟎
 (40)

𝑿𝑿𝟐𝟐 ~ 𝑵𝑵(𝝁𝝁𝟐𝟐,𝝈𝝈𝟐𝟐); 𝒑𝒑𝒑𝒑𝒑𝒑(𝑿𝑿2 = 𝒙𝒙2) =
𝟏𝟏

𝝈𝝈𝟏𝟏√𝟐𝟐𝝅𝝅
𝒆𝒆
−(𝒙𝒙𝟐𝟐−𝝁𝝁𝟐𝟐)𝟐𝟐

𝟐𝟐𝝈𝝈𝟐𝟐
𝟐𝟐 𝟎𝟎.𝟎𝟎 ≤ 𝒙𝒙𝟐𝟐 ≤ 𝟒𝟒𝟒𝟒,𝟎𝟎𝟎𝟎𝟎𝟎.𝟎𝟎

𝝁𝝁𝟐𝟐 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟎𝟎 𝝈𝝈𝟐𝟐 = 𝟒𝟒,𝟎𝟎𝟎𝟎𝟎𝟎.𝟎𝟎
 (41)

For this particular case, the “goal” function models a threshold on the peak-clad temperature (the

maximum temperature reached by the cladding). For this analysis, a threshold of 1477.6 K (2200°F) is
used:

𝑪𝑪(𝒚𝒚) = �
+𝟏𝟏 (𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇)
−𝟏𝟏 (𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔)

 𝒊𝒊𝒊𝒊 𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 ≥ 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟔𝟔 𝑲𝑲
 𝒊𝒊𝒊𝒊 𝑻𝑻𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 < 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟔𝟔 𝑲𝑲 (42)

31

To compare the new multi-grid acceleration scheme and previous approach, the convergence criteria
in Table 5 are used.

Table 5. RELAP-7 station black-out analysis: Limit surface search convergence criteria.
Parameter Multi-grid LS Search Fixed-grid LS Search

Persistency 20 20
Tolerance (CDF) 5.625E−6 6.25E−7*
Multi-grid tolerance (CDF) 6.25E−7* —
*Final probability convergence tolerance.

Also for this case, an SVM classifier, with a radial basis function kernel, is used in the LS search

process.

In addition, a 100.000 samples MC is run; subsequentially, the a-posteriori LS is computed.

As for the other cases, for all three employed sampling strategies, the final probability is computed
using the LS integral post-processor explained in Subsection 4.4.1.

Figure 20 and Figure 21 show the location of the samples and final LS for the multi-grid approach.
There are no figures shown for the LS search method as they are similar to figures shown for the previous
LS search method.

Figure 20. Samples’ location in multi-grid limit
surface approach (two-dimensional pressurized
water reactor station black-out scenario).

Figure 21. Limit surface in multi-grid limit
surface approach (loss of outside power scenario).

Table 6 compares the multi-grid and fixed-grid approaches.

Table 6. Multi-grid and fixed-grid comparison: RELAP-7 station black-out analysis.
Parameter Multi-grid LS Search Fixed-grid LS Search Speed-up Factor

Number of iterations 1701 2902 Approximately 1.7
Probability 8.4170E−02 8.4170E−02 —
Probability MC 8.4254E−02 — —

32

It is noticeable that determination of the LS location, in this case, is quite trivial. In such case, the
gain in the convergence is not as good as the previous tests. Anyhow, a gain factor of approximately 1.7,
for high-demanding physical models (e.g., system codes), can consistently decrease the number of CPU
hours needed for a full PRA analysis.

The probability computed with the LS obtained for both approaches is the same; this is another
indication that both methodologies converge on the same solution (the converged LS location is exactly
the same). In addition, the difference between the probabilities computed with the MC approach and LS
search approach is within the 0.1%.

6. FUTURE DEVELOPMENT
In this report, a multi-grid acceleration scheme was explained. During accomplishment of this work,

other possible methodologies were identified for the improvement of the convergence of the LS search.
As reported in Subsection 4.4.2, the multi-grid approach consists in a two-step iterative process, firstly
converging on a coarse grid and, then, on a refined one. This approach lets the user choose the refinement
strategy, that most of the times, is quite complicated to define, overall for the stability of the ROM. To
overcome and simplify the use of this new algorithm, in the near future, the method will be improved by
adding an automated refinement scheme to focalize in the stabilization of the synthetic operator
represented by the ROM.

Another path of research and development is about the wrapping of the ROMs in an “outer” iterative
process, based on the optimization of their internal parameters (e.g., penalty error factors and smoothing
parameters). This converged ROM will then be used as an acceleration algorithm for the LS search
method.

In addition, development will focus on identifying and employing better algorithms for efficiently
choosing the points in the phase space that need explored. The authors would like to explore a
methodology that is based on using the directional derivatives directly computed, during the iterative
process, on the LS.

7. CONCLUSIONS
This report focused on new development of the acceleration of the LS search from a mathematical

and numerical point of view. The new acceleration algorithm based on the multi-grid approach looks
extremely promising. It significantly improved the convergence of the LS search process, simultaneously
reducing the CPU time to reach a stable solution.

To design and develop the method, several developments were necessary; these developments, only
briefly addressed in this report, are crucial for further research and development activities around the LS
search process and will significantly facilitate the future implementations, allowing the RAVEN team to
faster deploy future new acceleration schemes.

Overall, RAVEN is proposed as a valid tool for a more comprehensive and computational efficient
PRA analysis.

33

8. REFERENCES
1. Rabiti, C., A. Alfonsi, D. Mandelli, J. Cogliati, and R. Kinoshita, “RAVEN, a New Software for

Dynamic Risk Analysis,” PSAM 12 Probabilistic Safety Assessment and Management,
Honolulu, Hawaii, June 2014.

2. Rabiti, C., A. Alfonsi, D. Mandelli, J. Cogliati, R. Martinueau, and C. Smith, Deployment and
Overview of RAVEN Capabilities for a Probabilistic Risk Assessment Demo for a PWR Station
Blackout, INL/EXT-13-29510, Idaho National Laboratory, 2013.

3. Rabiti, C., A. Alfonsi, D. Mandelli, J. Cogliati, R. Kinoshita, and S. Sen, RAVEN User Manual,
INL/EXT-15-34123, Idaho National Laboratory, 2015.

4. Alfonsi, A., C. Rabiti, D. Mandelli, J. Cogliati, R. Kinoshita, and A. Naviglio, “RAVEN and dynamic
probabilistic risk assessment: Software overview,” in Proceedings of ESREL European Safety and
Reliability Conference, 2014.

5. Alfonsi, A., C. Rabiti, D. Mandelli, J. Cogliati, and R. Kinoshita, “Raven as a tool for dynamic
probabilistic risk assessment: Software overview,” in Proceedings of M&C2013 International Topical
Meeting on Mathematics and Computation, CD-ROM, American Nuclear Society, LaGrange Park,
IL, 2013.

6. Rabiti, C., D. Mandelli, A. Alfonsi, J. Cogliati, and B. Kinoshita, “Mathematical framework for the
analysis of dynamic stochastic systems with the raven code,” in Proceedings of International
Conference of Mathematics and Computational Methods Applied to Nuclear Science and Engineering
(M&C 2013), Sun Valley, ID, pp. 320–332, 2013.

7. Smith, C., C. Rabiti, and R. Martineau, Risk Informed Safety Margins Characterization (RISMC)
Pathway Technical Program Plan, INL/EXT-11-22977, Idaho National Laboratory, 2011.

8. Light Water Reactor Sustainability Program Integrated Program Plan, INL-EXT-11-23452, Idaho
National Laboratory, 2011.

9. Rabiti, C., A. Alfonsi, D. Mandelli, J. Cogliati, and B. Kinoshita, Advanced Probabilistic Risk
Analysis Using RAVEN and RELAP-7, INL/EXT-14-32491, Idaho National Laboratory, 2014.

10. David, A., R. Berry, D. Gaston, R. Martineau, J. Peterson, H. Zhang, H. Zhao, and L. Zou, RELAP-7
Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with
RELAP-7, INL/EXT-12-25924, Idaho National Laboratory, 2012.

11. Habermann, C., and F. Kindermann, “Multidimensional Spline Interpolation: Theory and
Applications,” Computational Economics, Volume 30, Issue 2, pp. 153-169.

12. Gordon, W.J., and J.A.Wixom, “Shepard’s Method of Metric Interpolation to Bivariate and
Multivariate Interpolation,” In Mathematics and Computation, Volume 32, Issue 141, pp. 253-264,
1978.

13. Rabiti, C., P. Talbot, A. Alfonsi, D. Mandelli, and J. Cogliati, Implementation of Stochastic
Polynomials Approach in the RAVEN Code, INL/EXT-13-30611, Idaho National Laboratory, 2013.

14. Alfonsi, A., C. Rabiti, D. Mandelli, J. Cogliati, R. Kinoshita, and A. Naviglio, “Dynamic event tree
analysis through Raven,” in Proceedings of ANS PSA 2013 International Topical Meeting on
Probabilistic Safety Assessment and Analysis, 2013.

15. RELAP5 Code Development Team, RELAP5-3D Code Manual, Idaho National Laboratory, 2012.

16. Gaston, D., C. Newman, G. Hansen, and D. Lebrun-Grandi, “MOOSE: A parallel computational
framework for coupled systems of nonlinear equations,” Nuclear Engineering Design, 239,
pp. 1768-1778, 2009.

34

17. Alfonsi, A., C. Rabiti, A. S. Epiney, Y. Wang, and J. Cogliati, “PHISICS Toolkit: Multi-Reactor
Transmutation Analysis Utility–MRTAU,” in Proceedings of PHYSOR 2012 “Advances in Reactor
Physics Linking Research, Industry, and Education,” Knoxville, TN, April 15-20, 2012.

18. Rabiti, C., J. Cogliati, G Pastore, R. J Gardner, and A. Alfonsi, “Fuel reliability analysis using Bison
and Raven,” in Proceedings of ANS PSA 2015 International Topical Meeting on Probabilistic Safety
Assessment and Analysis, 2013.

19. “Pressurized Water Reactor Main Steam Line Break (MSLB) Benchmark,” Volume I: Final
Specifications, NEA/NSC/DOC, Volume 99, Issue 8.

	1. INTRODUCTION
	2. RISK-INFORMED SAFETY MARGIN CHARACTERIZATION APPROACH
	3. RAVEN FRAMEWORK
	3.1 Introduction
	3.2 Software Infrastructure Overview
	3.2.1 Distribution Entity
	3.2.2 Sampler
	3.2.2.1 Forward Samplers. The forward sampler category collects all the strategies that perform the sampling of the input space without exploiting, through dynamic learning approaches, the information made available from the outcomes of calculation pr...
	3.2.2.2 Dynamic Event Tree Sampler. To clarify the idea behind the DET sampler currently available in RAVEN, a brief overview is needed.
	3.2.2.3 Models. The model entity, in the RAVEN environment, represents a “connection pipeline” between the input and output spaces. The RAVEN framework does not own any physical model (i.e., it does not possess the equations needed to simulate any phy...

	3.2.3 Simulation Environment

	4. LIMIT SURFACE SEARCH
	4.1 Limit Surface Concept and Properties
	4.2 Reduced Order Models
	4.3 Limit Surface Search Algorithm
	4.4 Acceleration Schemes
	4.4.1 Propaedeutic Development
	4.4.1.1 Grid Entity. Implementation of a grid entity, within the RAVEN framework, was very important to develop the acceleration algorithms later addressed in this report. In the past, RAVEN did not have an object that was fully dedicated in handling ...
	4.4.1.2 Limit Surface Post-processor. Another important development is represented by implementation of a post-processor for computing the LS. This post-processor can be used to compute the LS, based on already-generated data. For example, it is gener...
	4.4.1.3 Limit Surface Integration Post-processor. As already mentioned, the hyper-volume, which is bounded by the LS, is a measure of the probability of the event that is modeled through the “goal” function. For this reason, a post-processor was devel...

	4.4.2 Acceleration through Multi-grid Approach

	5. TEST CASES
	5.1 Simple Three-Dimensional Analytical Test
	5.2 Two-Dimensional Test Case in Presence of Failure Islands
	5.3 Pressurized Water Reactor Station Black-out Demo Using RELAP-7 as System Code

	6. FUTURE DEVELOPMENT
	7. CONCLUSIONS
	8. REFERENCES

