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EXECUTIVE SUMMARY 

The RISMC project aims to develop new advanced simulation-based tools to 
perform Computational Risk Analysis (CRA) for the existing fleet of U.S. nuclear power 
plants (NPPs). These tools numerically model not only the thermal-hydraulic behavior of 
the reactors primary and secondary systems, but also external event temporal evolution 
and component/system ageing. Thus, this is not only a multi-physics problem being 
addressed, but also a multi-scale problem (both spatial, m-mm-m, and temporal, ms-s-
minutes-years). As part of the RISMC CRA approach, a large amount of 
computationally-expensive simulation runs may be required. An important aspect is that 
even though computational power is growing, the overall computational cost of a RISMC 
analysis using brute-force methods may be not viable for certain cases. A solution that is 
being evaluated to assist the computational issue is the use of reduced order modeling 
techniques. During the FY2015, we investigated and applied reduced order modeling 
techniques to decrease the RISMC analysis computational cost by decreasing the number 
of simulation runs; for this analysis improvement we used surrogate models instead of the 
actual simulation codes. This report focuses on the use of reduced order modeling 
techniques that can be applied to RISMC analyses in order to generate, analyze, and 
visualize data. In particular, we focus on surrogate models that approximate the 
simulation results but in a much faster time (microseconds instead of hours/days). We 
apply reduced order and surrogate modeling techniques to several RISMC-types of 
analyses using RAVEN and RELAP-7 and show the advantages that can be gained. 
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Reduced Order Model Implementation in the

Risk-Informed Safety Margin Characterization Toolkit 
 

 

1. INTRODUCTION 

In the Risk Informed Safety Margin Characterization (RISMC) [1] approach, what we want to 
understand is not just the frequency of an event like core damage, but how close we are (or not) to key 
safety-related events and how might we increase the safety margin.  A safety margin can be characterized 
in one of two ways: 

A deterministic margin, typically defined by the ratio (or, alternatively, the difference) of a 
capacity (i.e., strength) over the load 

A probabilistic margin, defined by the probability that the load exceeds the capacity. A 
probabilistic safety margin is a numerical value quantifying the probability that a safety metric 
(e.g., for an important process observable such as cladding temperature) will be exceeded under 
accident scenario conditions. 

The RISMC Pathway uses the probabilistic methods to determine safety margins and quantify their 
impacts to reliability and safety for existing Nuclear Power Plants (NPPs), i.e., pressurized and boiling 
water reactors (PWRs and BWRs).  As part of the quantification, we use both probabilistic (via risk 
simulation) and mechanistic (via system simulators) approaches, as represented in Figure 1. Probabilistic 
analysis is represented by the risk analysis while mechanistic analysis is represented by the plant physics 
calculations. In the plant simulation, all the deterministic aspects that characterize system dynamics (e.g., 
thermal-hydraulic, thermal-mechanics, neutronics) are coupled to each other. 

The risk simulation contains all deterministic elements that impact accident evolution such as: 

Safety systems control logic 

Accident scenario initial and boundary conditions 

In addition to stochastic ones such as: 

System/component failures 

Stochastic perturbation of internal elements of the physics simulation 

The stochastic analysis [3] is performed in two steps: 

1. Sampling the stochastic parameters, and 

2. Evaluating the system response for the given set of sampled parameters 
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In the RISMC applications, system simulator codes model not only plant thermo-hydraulic, 
thermo-mechanic, neutronics, and ageing behavior but also model external event and human interactions 
with the plant itself. This is not only a multi-physics problem (i.e., different sets of equations are solved) 
but also a multi-scale one (i.e., both temporal and spatial scales). The drawback is that a single plant 
accident analysis (e.g., prediction of the seismic response of a BWR that underwent to a 60 years life 
extension license) might require long computational time that grows exponentially if multiple runs 
(through the sampling process) are needed. 

In [3] we have focused our attention on the sampling strategies that we are employing. We initially 
employed classical sampling algorithms like Monte-Carlo, Grid and Latin Hypercube. In addition, we 
investigated more advanced sampling algorithms that aim to reduce the number of samples required to 
perform the desired stochastic analysis. We have shown how this reduction would allow the user to 
greatly reduce the computational costs of a typical RISMC analysis. 

In this report, however we are focusing on how we can reduce the computational costs by more 
broadly employing Reduced Order Modeling techniques in typical RISMC-type analyses. We will show 
how reduced order modeling techniques can be applied to any RISMC analysis to generate, analyze and 
visualize data. In particular, we focus on surrogate models that approximate the simulation results but in a 
much faster time (microseconds instead of hours/days). We apply reduced order and surrogate modeling 
techniques to several RISMC types of analyses using RAVEN [4] and RELAP-7 [5] and show the 
advantages that can be gained. 

 
Figure 1 – The approach used to support RISMC analysis 
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The report is structured in three main parts that are described as follows: 

Part 1: 
RISMC 

Approach  

Section 2 (page 1): Description of the RISMC PRA approach 

Section 3 (page 6): Description of the RISMC toolkit: RAVEN, CROW and 
RELAP-7 

Section 4 (page 11): Overview of Reduced Order Modeling and its applications 
in the RISMC analysis steps 

Section 5 (page 18): Summary of analytical tests that will be employed in 
Sections 9 and 10 

  

Part 2: Reduced 
Order 

Modeling 

Section 6 (page 25): Summary and examples of how reduced order modeling 
techniques can be employed in RISMC-types of applications  

Section 7 (page 39): Description of temporal ROM 

Section 8 (page 44): Description of the surrogate models available in RAVEN 
and focus on the ones employed in this report 

Section 9 (page 50): Classifiers comparison and convergence tests 

Section 10 (page 71): Regressor models comparison and convergence tests  

  
Part 3: 

Conclusions Section 11 (page 106): Conclusions and summary of the work presented 
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2. RISMC APPROACH 
 

The RISMC approach employs both deterministic and stochastic methods in a single analysis 
framework (see Figure 2). In the deterministic method set we include: 

Modeling of the thermal-hydraulic behavior of the plant [6] 

Modeling of external events such as flooding [7] 

Modeling of the operators responses to the accident scenario [8] 

Note that deterministic modeling of the plant or external events can be performed by employing 
specific simulator codes but also surrogate models (see Section 5), known as reduced order models 
(ROM). ROMs would be employed in order to decrease the high computational costs of employed codes. 

In addition, multi-fidelity codes can be employed to model the same system; the idea is to switch 
from low-fidelity to high-fidelity code when higher accuracy is needed (e.g., use low-fidelity codes for 
steady-state conditions and high-fidelity code for transient conditions) 

On the other hand, in the stochastic modeling we include all stochastic parameters that are of 
interest in the PRA analysis such as: 

Uncertain parameters 

Stochastic failure of system/components 

 

 
Figure 2 – Overview of the RISMC modeling approach 
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The RISMC approach heavily relies on multi-physics system simulator codes (e.g., RELAP-7 [5]) 
coupled with stochastic analysis tools (e.g., RAVEN [4]). From a mathematical point of view, a single 
simulator run can be represented as a single trajectory in the phase space. The evolution of such a 
trajectory in the phase space can be described as follows: 

 (1) 

where: 

 represents the temporal evolution of a simulated accident scenario, i.e.,  represents 
a single simulation run 

 is the actual simulator code that describes how  evolves in time 

represents the status of components and systems of the simulator (e.g., status of 
emergency core cooling system, AC system) 

By using the RISMC approach, the PRA analysis is performed by [2]: 

1. Associating a probabilistic distribution function (pdf) to the set of parameters  (e.g., timing of 
events) 

2. Performing stochastic sampling of the pdfs defined in Step 1 

3. Performing a simulation run given  sampled in Step 2, i.e., solve Eq. (1) 

4. Repeating Steps 2 and 3 M times and evaluating user defined stochastic parameters such as core 
damage (CD) probability ( ). 
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3. RISMC TOOLKIT 

In order to perform advanced safety analysis, the RISMC Pathway has a toolkit that was developed 
at INL using MOOSE [9] as the underlying numerical solver framework. This toolkit consists of the 
following software tools (see Figure 3): 

RELAP-7 [5] (see Section 2.2): the code responsible for simulating the thermal-hydraulic 
dynamics of the plant. 

RAVEN [4,10] (see Section 6): has two main functions: 1) act as a controller of the RELAP-7 
simulation and 2) generate multiple scenarios (i.e., a sampler) by stochastically changing the 
order and/or timing of events. 

PEACOCK [11] (see Section 2.3): the Graphical User Interface (GUI) that allows the user to 
create/modify input files of both RAVEN and RELAP-7. Also, it monitors the simulation in real 
time while it is running. 

GRIZZLY [12]: the code that simulates the thermal-mechanical behavior of components in order 
to model component aging and degradation.  Note that for the analysis described in this report, 
aging was not considered. 

 

Figure 3 – Overview of the RISMC toolkit 
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3.1 RELAP-7  

The RELAP-7 code [5] is the new nuclear reactor system safety analysis code being developed at 
the Idaho National Laboratory (INL). RELAP-7 is designed to be the main reactor system simulation 
toolkit for the RISMC Pathway. The RELAP-7 code development is taking advantage of the progress 
made in the past several decades to achieve simultaneous advancement of physical models, numerical 
methods, and software design. RELAP-7 uses the INLs MOOSE (Multi-Physics Object-Oriented 
Simulation Environment) framework [9] for solving computational engineering problems in a well-
planned, managed, and coordinated way. This allows RELAP-7 development to focus strictly on systems 
analysis-type physical modeling and gives priority to retention and extension of RELAP5s 
multidimensional system capabilities. 

A real reactor system is complex and may contain hundreds of different physical components. 
Therefore, it is impractical to preserve actual geometry for the entire system. Instead, simplified thermal-
hydraulic models are used to represent (via “nodalization”) the major physical components and describe 
major physical processes (such as fluid flow and heat transfer). There are three main types of components 
developed in RELAP-7: (1) one-dimensional (1-D) components, (2) zero-dimensional (0-D) components 
for setting a boundary, and (3) 0-D components for connecting 1-D components.  

 

3.2 Risk Analysis in a Virtual ENviroment (RAVEN)  

RAVEN (Risk Analysis in a Virtual ENviroment) [4,10] is a software framework that acts as the 
control logic driver for the thermal-hydraulic code RELAP-7, a newly developed software at INL. 
RAVEN is also a multi-purpose Probabilistic Risk Assessment (PRA) code that allows for probabilistic 
analysis of complex systems. It is designed to derive and actuate the control logic required to simulate 
both plant control system and operator actions (guided procedures) and to perform both Monte-Carlo 
sampling [13] of random distributed events and dynamic branching-type [14] based analysis.  

RAVEN consists of two main software components: 

1. Simulation controller (see Section 3.2.1) 

2. Statistical framework (see Section 3.2.2) 

 

3.2.1 Simulation controller 

One task of RAVEN is to act as controller of the RELAP-7 simulation while simulation is running. 
This control action is performed by using two sets of variables [10]: 

Monitored variables: the set of observable parameters that are calculated at each calculation step 
by RELAP-7 (e.g., average clad temperature) 

Controlled parameters: the set of controllable parameters that can be changed/updated at the 
beginning of each calculation step (e.g., status of a valve – open or closed –, or pipe friction 
coefficient) 
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The manipulation of these two data sets of variables is performed by two components of the 
RAVEN simulation controller (see Figure 4): 

RAVEN control logic: is the actual system control logic of the simulation where, based on the 
status of the system (i.e., monitored variables), it updates the status/value of the controlled 
parameters 

RAVEN/RELAP-7 interface: is in charge of updating and retrieving RELAP-7/MOOSE 
component variables according to the control logic 

A third set of variables, i.e. auxiliary variables, allows the user to define simulation specific 
variables that may be needed to control the simulation. From a mathematical point of view, auxiliary 
variables are the ones that guarantee the system to be Markovian [15], i.e., the system status at time 

 can be numerically solved given only the system status at time . 

The set of auxiliary variables also includes those that monitor the status of specific control logic set 
of components (e.g., diesel generators, AC buses) and simplify the construction of the overall control 
logic scheme of RAVEN. 

 

Figure 4 – RAVEN simulation controller scheme 
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3.2.2 RAVEN Statistical Framework 

The RAVEN statistical framework is a recent add-on of the RAVEN package that allows the user 
to perform generic statistical analysis. By statistical analysis we include: 

Sampling of codes: either stochastic (e.g., Monte-Carlo [16] and Latin Hypercube Sampling [17]) 
or deterministic (e.g., grid and Dynamic Event Tree [18]) 

Generation of Reduced Order Models [19] also known as Surrogate models 

Post-processing of the sampled data and generation of statistical parameters (e.g., mean, variance, 
covariance matrix) 

Figure 5 shows an overview of the elements that comprise the RAVEN statistical framework: 

Model: it represents the pipeline between input and output space. It comprises both codes (e.g., 
RELAP-7) and also Reduced Order Models  

Sampler: it is the driver for any specific sampling strategy (e.g., Monte-Carlo, LHS, DET) 

Database: the data storing entity 

Post-processing module: module that performs statistical analyses and visualizes results 

  

 

Figure 5 – Scheme of RAVEN statistical framework components 
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3.2.3 CROW Library 

CROW is an INL internally developed C++ library which contains the full set of probabilistic 
functions which are used by RAVEN to perform any kind of statistical analysis. It contains the following 
modules: 

Interface with BOOST [20]. BOOST1 is a set of libraries for the C++ programming language that 
provide support for tasks and structures such as linear algebra, pseudorandom number generation, 
multithreading, image processing, regular expressions, and unit testing. For our applications we 
are using the mathematical/statistical2 library of BOOST which contains a wide selection of 
univariate statistical distributions and functions that operate on them (pdf and cdf calculation 
along with random number generation). 

Multi-variate distributions. This module contains the same functions mentioned above (pdf and 
cdf calculation along with random number generation) but applied to multi-variate distributions. 
Not only multi-variate normal distributions are modeled but also generic multi-variate 
distributions defined over a set of samples scattered or grid distributed. 

  

                                                      
1 http://www.boost.org/ 
2 http://www.boost.org/doc/libs/1_58_0/libs/math/doc/html/dist.html  
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4. REDUCED ORDER MODELING 

Reduced order modeling is a fairly generic term. Its semantics changes from field to field (e.g., 
computer science, engineering and so on.) For the scope of this report, we include in the Reduced Order 
Modeling term all methodologies and algorithms that aim to reduce the complexity of a problem, where 
“a problem” is considered a broad term and can be either an abstract entity (e.g., a simulator code or a 
dataset) or a concrete entity (e.g., an experimental facility, a power plant). 

In the RISMC applications, we are mainly dealing with numerical entities such as system codes like 
RELAP-7. It is relevant to highlight that the safety modeling of a nuclear system is not only a thermal-
hydraulic problem but several other models are required: neutron transport, thermo-mechanics, chemistry, 
fracture propagation, etc. Note how the overall problem is not only multi-physics but also multi-scale 
both in the spatial scale but also in the temporal scale. While the coupling of these processes can be 
implicitly solved numerically, the RISMC project is focusing its attention toward the use of reduced order 
modeling techniques in order to decrease the computational cost (in terms of both computing power and 
memory requirement.) 

For the scope of this report we divided the concept of Reduced Order Modeling into three main 
categories: 

Reduced physics: use of simulator codes that employ simplified physics problems. An example is 
the use of diffusion codes to solve neutronic problems instead of transport codes. In this category 
we also include the possibility to use in the same simulation run high and low fidelity models 
depending on the boundary conditions of the simulation. 

Reduced dimensionality: a simulation run can be seen as a trajectory in the phase space and a 
single point in the input space. The dimensionality of these spaces can be very high for the 
complex analyses. This category includes all methods than aim to reduce the dimensionality of 
these spaces and project the original problem into the reduced space. 

Surrogate model: surrogate models are mathematical objects that emulate the behavior of a code 
by learning its input/output relations and reconstructing such relations through a 
regression/interpolation based approach. 

 

Figure 6 – Examples of Reduced Order Modeling: regression (left), interpolation (center) and 
dimensionality reduction (right) (source: http://scikit-learn.org) 
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For the last two categories the set of methodologies employed are typically based on regression 
(e.g., Gaussian process models [21]), interpolation (e.g., spline kernel and linear kernel) and 
dimensionality reduction algorithms (e.g., Principal Component Analysis –PCA– [22] and ISOMAP 
[23]). Figure 6 illustrates all the three algorithms above mentioned. 

In Figure 2 we have shown the four basic steps of the RISMC approach. In order to illustrate how 
Reduced Order Modeling techniques can be applied in the RISMC approach, we have indicated in Figure 
7 the set of methods that can be applied to each of the four RISMC steps. 

Deterministic modeling: employment of reduced physics codes (i.e., multi-fidelity codes) or 
surrogate models instead of the actual codes 

Stochastic modeling: reduction of the number of stochastic parameters to be sampled (i.e., 
reduction of the dimensionality of the input space) 

Stochastic Analysis: reduction of the number of simulations to run by carefully choosing a 
minimum set of simulations that maximize the amount of information required by the analysis 
(adaptive – smart – sampling) 

Data Post-Processing: use of stochastic analysis tools (e.g., Kernel Density Estimation methods) 
to summarize large amounts of data and employment of advanced topology-based visualization 
tools to visualize high dimensional data. 

 

Figure 7 – Overview of how Reduced Order Modeling can be applied to the four main steps of a 
typical RISMC analysis 
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In the present report we will focus in great detail on surrogate models and adaptive sampling 
techniques. We will briefly describe the dimensionality reduction topic (see Section 4.2) and the 
visualization of the obtained data (see Section 6.3) since they are under development within in the 
RAVEN statistical framework. We will not cover the concept of physics reduction (i.e., multi-fidelity 
codes). 

 

4.1 Surrogate Models 

A surrogate model is a mathematical model that aims to build a correlation given a set of data points. 
The starting point is typically a set of  data points: 

      Eq. 1 
 

that sample the response of the original model. Given the set of these  data points, the ROM is trained 
and the resulting outcome is a model  that approximates the original model (see Figure 2):  

 Eq. 2 
 

The advantage of the ROM is the much faster computation of  (e.g., RELAP) compared to the 
original model . However, the evaluation of a ROM is affected by an intrinsic error, which can not 
always be bound and/or quantified. 

We have identified two classes of ROM: model based and data based. These two classes are described 
in the next two sections. 

In model based ROMs the prediction is performed using a blend of interpolation and regression 
algorithms3. Examples are: 

Gaussian Process Models (GPMs) [21] 

Multi-dimensional spline interpolators [24] 

This class of algorithms has the advantage that they possess great prediction capabilities if the 
original  is relatively smooth (i.e., not discontinuous). 

                                                      
3 Interpolation: Given a set of  data points  , interpolation aim to find a function  that is of 
some user-defined form (e.g., linear) that has the values in that points exactly as specified, i.e., it satisfies 

.  
Given the same set of  data points  , regression, regression look for a function that minimizes 
some cost, usually sum of squares of errors . The requirement  is usually not imposed.  
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Figure 8 – Example of reduced order modeling approximation of a sampled 3-D response surface 

In data based ROMs the prediction is performed by solely considering the input data by using data 
searching algorithms. Examples are: 

K Nearest Neighbor classifier (KNN) [25] 

Graph based models [26] 

While the predictions of this class of ROMs is limited compared to model based ROMs, they have 
the advantage that they are able to handle very discontinuous . 

 

4.2 Dimensionality Reduction 

Dimensionality reduction is the process of finding a bijective mapping function : 

 

which maps the data points from the D-dimensional space into a reduced d-dimensional space (i.e. 
embedding on a manifold) in such a way that the distances between each point and its neighbors are 
preserved.  

Linear algorithms, such as PCA [22] or multidimensional scaling (MDS) [27], have the advantage 
that they are easier to implement; however, they can only identify linear correlation among variables. On 
the other hand, methodologies such as Local Linear Embedding [28] and ISOMAP [23] are more 
computationally intensive but they are able to identify non-linear correlations. Figure 9 shows two 
examples of linear and non-linear correlations. In both cases points are distributed in a 2-dimensional 
space (i.e., characterized by 2 variables: ) but they are lying in a 1-dimensional space. 
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Figure 9 – Example of linear (a) and non-linear (b) correlation between 2 variables. 

The main idea behind PCA [22] is to perform a linear mapping of the data set onto a lower 
dimensional space such that the variance of the data in the low-dimensional representation is maximized. 
This is accomplished by determining the eigenvectors and their corresponding eigenvalues of the data 
covariance matrix4 . The eigenvectors that correspond to the largest eigenvalues (i.e., the principal 
components) can be used as a set of basis functions. Thus, the original space is reduced to the space 
spanned by a few eigenvectors. 

 Figure 10 shows an example of dimensionality reduction using PCA for a data set distributed in a 
2-dimensional space. After performing the eigenvalue-eigenvector decomposition of the covariance 
matrix, the algorithm chooses the eigenvector having the largest eigenvalue (i.e., ) as subspace to 
project the original data. The algorithm is very easy to implement but, on the other hand, PCA is not able 
to identify non-linear correlations of more complex data sets. 

 

Figure 10 – Example of dimensionality (from D = 2 to d = 1) reduction using PCA 

  

                                                      
4 Given a data set in form of a vector Z, rows correspond to data dimensions (D) and columns correspond to data observations 
( ), the covariance matrix  is determined as  

. 
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Multidimensional scaling MDS [27] is a popular technique used to analyze the properties of data 
sets. The scope of this methodology is to find a set of dimensions that preserve distances between data 
points. This is performed by: 

1. Creating dissimilarity matrix  where  is the distance between two points and  

2. Finding the hyper-plane that preserves the dissimilarity matrix  (i.e., the nearness of points) 

As in PCA analysis, the algorithm can be easily implemented but it is not able to identify non-
linear correlations of more complex data sets. 

Since PCA and MDS are linear algorithms and, thus, limited to the data sets which include only 
linear correlations among variables it was decided to consider non-linear algorithms such as those based 
on manifold analysis. In particular, the ISOMAP5 [23] algorithm has been considered. The ISOMAP 
algorithm provides a simple method for estimating the intrinsic geometry of a data manifold based on a 
rough estimate of each data points neighbors on the manifold. ISOMAP is one representative of isometric 
mapping methods, and extends MDS by incorporating the geodesic distances6 (distance along the 
manifold) imposed by a weighted graph. ISOMAP is distinguished by its use of the geodesic distance 
induced by a neighborhood graph embedded in the classical scaling. The algorithm is implemented by 
following these two steps: 

1. Estimate the geodesic distance between points in inputs using shortest-path distances on the data 
sets k nearest neighbor7. The connectivity of each data point in the neighborhood graph is defined 
as its nearest k Euclidean neighbors in the high-dimensional space. 

2. Use MDS to find points in low-dimensional Euclidean space whose interpoint distances match 
the distances found in Step 1. 

 

4.3 Reduced Order Modeling in RAVEN: Workflow 

As shown in Section 3.2, the RAVEN statistical framework is a flexible environment that allows 
the user to perform stochastic sampling of codes, analysis of the data generated and generation of 
Surrogate Models. In addition RAVEN is able to operate not only on end-user types of machines (i.e., 
desktop, laptop and workstations) but to perform parallel computing on High Performance Computing 
(HPC) such as FALCON located at INL. 

For this report we have performed several stochastic analyses using RELAP-7 and external models 
(mainly test functions coded as python script). Since each RELAP-7 run may take several hours we have 
decided to perform the stochastic analysis that required RELAP-7 on FALCON while the rest of the 
analyses on a laptop computer. 

Figure 11 gives an overview of the possible path that has been followed in this report using 
RAVEN and RELAP-7 on both end-user and HPC machines. 

                                                      
5 http://isomap.stanford.edu/ 
6 In graph theory, the distance between two vertices in a graph is the number of edges in a shortest path connecting 
them. This is also known as the geodesic distance. 
7 ISOMAP defines the geodesic distance to be the sum of edge weights along the shortest path between two nodes. 
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Figure 11 – RAVEN Reduced Order Modeling workflow 
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5. MODELS 

In this section we present the set of models that we used to test some of the surrogate models 
available in RAVEN. These models are both analytical (see Section 5.1) and also RISMC related models 
using RELAP-7 (see Section 5.2). In the next two sections these models are described in detail. 

5.1 Analytical Models 

5.1.1 Rosenbrock Function 

The Rosenbrock function (see Figure 12) is a three dimensional surface that is determined by the 
following equation: 

 Eq. 3

 

Figure 12 – Plot of the Rosenbrock function 

The distinctiveness of this function is that it has three local maxima and a local minima region. 
This function is used for both classifier and regressor types of surrogate models. For the classifier case, 
we aim to identify the location of the points  such that ; such a region is called the limit
surface [32] and it is shown in red in Figure 12. 

5.1.2 Triangular Region 

This test case is being used uniquely to test some of the classifiers available in RAVEN. This test 
has been chosen in order to test classifier performance to deal with closed discontinuous regions. This 
region is shown in Figure 13. 
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Figure 13 – Triangular region plot 

5.1.3 Paraboloid function 

The Paraboloid function (see Figure 14) is a three dimensional surface that is described by the 
following equation: 

 Eq. 4
 

This test function is used to test some of the surrogate models (i.e., regressors) that will be used for 
uncertainty propagation and sensitivity analysis type of applications. 

 

Figure 14 – Plot of the paraboloid function  
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5.2 RELAP-7 Models 

5.2.1 PWR Natural Circulation Loop 

The model used in this report, as shown in Figure 15, is an imaginary scaled experiment [29]. The 
typical PWR core channel (2 × 2 fuel rods) is used for the heating section. The same fuel rod parameters 
are used as in the single channel numerical verification work. The cooler is a tube-shell type counter-
current heat exchanger (HX) with primary coolant inside the pipe. The pipes are also arranged in a 2 × 2 
square shape. The major TH parameters are listed in Table 1. The power is about 1% of the full power of 
the 4 fuel rods to simulate the typical decay heat.  

The same wall friction and heat transfer correlations from RELAP5 [30] are used in RELAP-7 for 
the primary side. A very large number (106 W/m2-K) is used for the HX secondary heat transfer 
coefficient to simulate boiling heat transfer. For this problem, we only focus on the primary side. 

Table 1 – Major TH Parameters of the RELAP-7 PWR Natural Circulation Loop [29] 

Parameter Value 
Heating power, W 3093.5 
Initial pressure, MPa  15.5 
Initial primary side temperature, K 559.15 
Initial secondary side temperature, K 529.15 
Initial primary side mass flow rate, kg/s 1.2935 
Secondary side inlet flow velocity (TDJ), m/s 1.5 
Secondary side inlet temperature (TDJ), K 529.15 
Pipe diameters for P1, P2, P3, and P4, m 0.04 
Pipe diameter for P5, m 0.01 
Hydraulic diameter in core channel, m 0.01178 
Length of the core channel, m 3.865 
Inside diameter of HX pipe, m 0.01 
Length of HX, m 4 
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Figure 15 – Scheme of the PWR natural circulation loop [29] 

The transient starts with a uniform initial primary temperature and the given mass flow rate. The 
coast-down process then starts and is subsequently followed by gradually establishing natural circulation, 
which is driven by the temperature difference between the hot side (left) and cold side (right).  

The PCT (Peak Clad Temperature) and the mass flow rate through the core channel are shown in 
Figure 16 and Figure 17, respectively. The evolution of the natural circulation can be divided into several 
stages. During the first stage (up to 4 s), the initial kinetic energy is rapidly damped by friction and form 
losses. The mass flow rate reaches the minimal value. During the second stage (4 s to 95 s), natural 
circulation is established and the PCT reaches the highest value at the end of this stage. The third stage 
(95 s to 700 s) shows the steady decreasing of PCT due to increased mass flow rate. When the cold 
column originating from the HX reaches the core, the PCT rapidly drops to the minimal value. During the 
fourth stage (700 s to 1200 s), the natural circulation capability is weakened due to decreasing hot section 
temperature. The stage ends when the last hot column originating from the core channel reaches the HX. 
After about half an hour, the transient almost approaches steady state. Except for the short duration during 
the coast-down stage, the flow is turbulent through the loop. 
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Figure 16 – PWR natural circulation loop: temporal transient for peak clad temperature [29] 

 

Figure 17 – PWR natural circulation loop: temporal transient for mass flow rate [29] 

 

5.2.2 TMI PWR Model 

A PWR simplified model has been set up based on the parameters specified in the OECD main 
steam line break (MSLB) benchmark problem [31]. The reference design for the OECD MSLB 
benchmark problem is derived from the reactor geometry and operational data of the TMI-1 Nuclear 
Power Plant (NPP), which is a 2772 MW two loop pressurized water reactor (see the system scheme 
shown in Figure 18). 
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Figure 18 – Scheme of the RELAP-7 TMI loop 

The scenario considered is a loss of off-site power (LOOP) initiating event caused by an 
earthquake followed by tsunami induced flooding. Depending on the wave height, it causes water to enter 
into the air intake of the DGs and temporary disable the DGs themselves. In more detail, the scenario is 
the following (see Figure 19): 

1. An external event (i.e., earthquake) causes a LOOP due to damage of both off-site grid lines; the 
reactor successfully scrams and, thus, the power generated in the core follows the characteristic 
exponential decay curve 

2. The DGs successfully start and emergency cooling to the core is provided by the Emergency Core 
Cooling System (ECCS) 

3. Due to a failure of the diesel generators, AC power is lost and conditions of SBO are reached; all 
core cooling systems are subsequently off-line (including the ECCS system) 

4. Without the ability to cool the reactor core, its temperature starts to rise 

5. In order to recover AC electric power, a plant recovery team is assembled in order to recover one 
of the two DGs  

6. When the AC power is recovered, the auxiliary cooling system (i.e., ECCS system) is able to cool 
the reactor core and, thus, core temperature decreases 
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Figure 19 – TMI test case: Example of LOOP+SBO+AC recovery transient 
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6. APPLICATIONS 

In this section we cover a set of applications that employs Reduced Order Modeling techniques. 
We will show a set of applications that are of interest in the RISMC pathway. In particular, we focus on a 
subset of the ones presented in Figure 7. 

 

6.1 PRA Applications: Adaptive Sampling 

The general adaptive sampling pipeline [45] begins by selecting some initial training data, running 
the simulation and obtaining a collection of true responses at these data points. Second, it fits a response 
surface surrogate model from the initial set of training data. Third, a set of candidate points is chosen in 
the parameter space based on certain sampling techniques, and the surrogate model is evaluated at these 
points, obtaining a set of approximated values. Fourth, each candidate point is assigned a score based on 
some adaptive sampling scoring function (usually derived from qualitative or quantitative relations 
between the training points, their true and estimated response values). Finally, the candidate(s) with the 
highest score(s) are selected and added to the set of training data to begin a new cycle. 

As mentioned earlier this kind of sampling strategy requires not only simulator codes but also one, 
or possibly more, ROMs [19]. In our case, it is possible to view the code as a black-box  that produces 
a set of output variables  given a set of input parameters : 

 Eq. 5 
 

In addition, it is needed to provide what we call an “objective function”. The objective function 
gives indications on what is the desired “exploration” criteria. We will give more description of the 
objective functions in Section 4.2. 

The main adaptive sampling steps are explained as follows (see Figure 20): 

1. Perform a set of runs of the simulator code: the number of required runs may depend on the 
dimensionality of the input space.  

2. Given the set of simulation runs obtained in Step 1, create a ROM. The objective of this ROM is 
to: 

Infer the response of the simulator code, i.e., create an approximate output given the same 
set of input parameters 

Predict the regions in the input space that maximizes the objective function 

3. Employ the ROM to approximate the structure of the goal function 

4. Identify a set of points that satisfy the conditions specified in the goal function and choose a 
subset of points from the ones obtained in Step 4 that maximize the goal function 

5. Perform a simulation run for each of the points obtained in Step 5 using the simulator code 

6. Repeat Steps 2 through 6 until convergence is reached  



 

26 

 

Figure 20 – Workflow of adaptive sampling algorithms 

As part of safety margin quantification, the RISMC approach aims to evaluate a set of limit surfaces 
[32]. A limit surface represents the boundaries in the input space (i.e., d-dimensional space; each 
dimension is one the d sampled variables) that separate the failure region (i.e., characterized by the 
undesired simulation outcome; e.g., core damage) from the success region (i.e., characterized by the 
desired simulation outcome; e.g., max clad temperature below 2200 F).  

 
Figure 21 – Example of limit surface calculation for two different values of core power levels [33] 

 

2. Train a surrogate model 

3. Use the surrogate model to determine 
an approximation of the limit surface 

4. Choose a set of samples on the 
approximated limit surface 

5. Run the “real” model to verify the 
approximation 

1. Generate a set of training simulations 
to sample the plant response 

Reach 
convergence

No Yes 
Stop
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The limit surface has a pure deterministic value; the stochastic information is generated when the 
probability of occurrence of the undesired event (e.g., core damage)  is determined as: 

 Eq. 6 

 

Equation 6 shows that  is equal to the area of the failure region weighted by the probability of being in 
the failure region itself (through the probability distribution function ). 

Figure 21 shows the limit surface in a 2-dimensional space generated in [33] using RAVEN coupled 
with RELAP-7 for a boiling water reactor station blackout initiating event. As part of the analysis, we 
were interested in the evaluation of the safety impacts of power uprate (reactor core power increased from 
100 to 120%). Such evaluation has been performed by evaluating both the increased core damage 
probability  and the limit surface for both 100 and 120% reactor core power levels Note that  
can be written as the same integral indicated in Eq. 6 but evaluated only in the expanded failure region 
( ) 

 Eq. 7 

 

 

6.1.1 RELAP-7 BWR SBO Test Case 

The fourth case presented to test the adaptive sampling scheme uses a more realistic application of 
adaptive sampling using the RISMC toolkit. Here we employed the RELAP-7 PWR system as model 
coupled to RAVEN to perform adaptive sampling testing.  

The scenario considered is a grid-related loss of off-site power (LOOP). In more detail, the 
scenario is the following: 

1. An external event (i.e., earthquake) causes the disruption in the power grid and causes a LOOP 
initiating event; the reactor successfully scrams and, thus, the power generated in the core follows 
the characteristic exponential decay curve 

2. The DGs successfully start and emergency cooling to the core is provided by the Emergency Core 
Cooling System (ECCS) 

3. At a certain time the DGs fail and, thus, conditions of SBO are reached; ECCS systems is 
subsequently off-line. Without the ability to cool the reactor core, its temperature starts to rise 

4. In order to recover AC electric power, a plant recovery team is assembled in order to recover one 
of the two DGs 

5. If AC power is recovered prior reaching core damage condition (CD), the auxiliary cooling 
system (i.e., ECCS system) is able to cool the reactor core and, thus, core temperature decreases 

In this case, we limit the analysis to two stochastic variables: 
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1. Time of loss of diesel generators (DGs) after LOOP 

2. Recovery time of DGs 

The RELAP-7 PWR model has been set up based on the parameters specified in the OECD main 
steam line break (MSLB) benchmark problem [31]. The reference design for the OECD MSLB 
benchmark problem is derived from the reactor geometry and operational data of the TMI-1 Nuclear 
Power Plant (NPP), which is a 2772 MW two loop pressurized water reactor (see the system scheme 
shown in Figure 18). 

For the scope of this report we wanted to show that one of the capabilities of RAVEN is to generate 
ROM and perform statistical analysis on them. For this case we collected the actual simulated data by 
RELAP-7 in [33], generated a ROM from such data and performed adaptive sampling on the ROM 
instead of the RELAP-7 code. In more detail, we performed the following steps: 

1. Retrieved the hdf5 data generated by sampling RELAP-7 in [33] 

2. Trained a ROM given the data retrieved in Step 1 

3. Sampled on a 2-dimensional Cartesian grid the ROM obtained in Step 2 

4. Performed adaptive sampling and limit-surface search 

 

6.1.2 PWR SBO Limit surfaces 

We performed the adaptive sampling analysis for this test case following an initial  Cartesian 
grid sampling for training. The sample locations and the estimated limit surface are shown for different 
steps of the sampling process, i.e. at iteration 1, 10, 30 and 60 (Figure 22) and 100, 150 and 185 (Figure 
23) past the training sampling. For each iteration note how the sample locations are quickly approaching 
the exact location of the limit surface and the estimated limit surface is converging.  

Table 2 compares the number of samples required to evaluate this limit surface by using classical 
Monte-Carlo and adaptive sampling.  As can be seen in the table, a dramatic reduction in samples is 
needed when using adaptive sampling for this problem. 

 

Table 2 – Number of samples required to evaluate the RELAP-7 PWR SBO limit surface by using 
classical Monte-Carlo and adaptive sampling (convergence in value is equal to )

 Number of Samples 

Monte-Carlo 107 

Adaptive 185 
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Iteration Sample Locations Estimated Limit Surface 

1 

10 

30 

60 

Figure 22 – RELAP-7 limit surface: sample locations and the estimated limit surface for different 
adaptive sampling iterations (1, 10, 30 and 60) 
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Iteration Sample Locations Estimated Limit Surface 

100 

150 

185 

Figure 23 – RELAP-7 limit surface: sample locations and the estimated limit surface for different 
adaptive sampling iterations (100, 150 and 185) 

 

6.1.3 Limit surface for 100%-120% core power levels 

We repeated the analysis of Section 6.2.2 for the case where the reactor power is set to 120% (i.e., 
a 20% power uprate). The scope of evaluating this new limit surface is to determine the reduction of the 
time to recovery for DGs. A 20% reactor power increase implies that clad temperature is increasing at a 
higher rate and thus the clad is reaching its melting temperature (2200 F) much faster. 

We performed Steps 1 through 6 of Section 6.1 for the new data set and evaluated the new limit 
surface for the 120% test case and the results are shown in Figure 24. 
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Figure 24 – Limit surface obtained for two different levels of core power: 100% (left) and 120% 
(right)

 

6.2 Uncertainty Quantification and Sensitivity Analysis 

Another set of application of Surrogate Models relevant to the RISMC project is Uncertainty 
Quantification (UQ) and Sensitivity Analysis (SA). For these kinds of applications we are following a 
response-surface approach where a Surrogate Models is trained in the region of the input space of interest. 
This training process aims to reconstruct the system response in this limited region of the input space. 
Then, the forward propagation of the uncertainties of the input parameters is performed by using the 
surrogate models instead of the actual code. This process is summarized in Figure 25. 

In Section 9 we show a comparison of several surrogate models for the forward propagation of 
uncertainties for a few test cases. In order to evaluate the performances of surrogate models we have 
decided to compare the following: 

First three moments of the figure of merits: mean, sigma and skewness 

Pearson coefficients of the input parameters 

Sensitivity coefficients of the input parameters 
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Figure 25 – Workflow used to perform UQ/SA using surrogate models 

 

We followed the workflow shown in Figure 25 to perform UQ/SA on the PWR natural circulation 
loop shown in Section 5.2.1 by using SVM (see Section 8.2) as a surrogate Model. Figure 26 shows a plot 
of the response function for the PWR natural circulation loop using peak fuel temperature as the figure of 
merit. 

 

 

Figure 26 – Comparsion of the response function of peak fuel temperature: original RELAP-7 (left) 
and the one obtained by using the ROM (right) 

2. Build a surrogate model: a model that 
approximates the system behavior 

3. Perform uncertainty propagation 
using the surrogate model 

1. Generate a set of training simulations 
to sample the system response max 
clad temperature  

4. Compare the first moments of the 
figure of merits 
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Table 3 – Comparison of the first three statistical moments, sensitivity and Pearson coefficients of 
peak fuel temperature 

  RELAP-7 ROM Relative Error 
mu 5.845 E+02 5.845 E+02 3.90 E-07 
sigma 3.469 E-01 3.472 E-01 -9.64 E-04 
skewness 3.446 E-01 3.434 E-01 3.72 E-03 
K sensitivity -6.664 E-01 -6.671 E-01 -1.15 E-03 
P sensitivity 7.231 E-03 7.234 E-03 -3.65 E-04 
K pearson -9.056 E-01 -9.057 E-01 -1.90 E-04 
P pearson -3.972 E-04 -3.972 E-04 0.00 E+00 

 

 

Figure 27 – Distribution of peak fuel temperature: RELAP-7 (left) and ROM (right) 

 

6.3 ROM for Data Visualization 

The need for software tools able to both analyze and visualize large amount of data generated by 
Dynamic PRA methodologies has been emerging only in recent years. In the past years, INL and the 
University of Utah have developed a software tool able to analyze multi-dimensional data: HDViz. 

HDViz models the relations between output variables (e.g., maximum clad temperature) and 
stochastic/uncertain parameters as high-dimensional functions. In this respect, HDViz segments the 
domain of these high-dimension functions into regions of uniform gradient flow by decomposing the data 
based on its approximate Morse-Smale complex (see Figure 28). Points (i.e., simulation runs) belonging 
to a particular segmentation have similar geometric and topological properties, and from these it is 
possible to create compact statistical summaries of each segmentation. Such summaries are then presented 
to the user in an intuitive manner that highlights features of the dataset that are otherwise hidden.  

 



 

34 

 

Figure 28 – Representation example of a 2-dimensional function in terms of crystals that connect 
local minima to local maxima. In this case, a single minima (blue arrow) and 3 maxima (red 

arrows) have been identified. Three crystal have also been determined; each one showing the path 
that connects a local minima to a local maxima

In [34] we presented a methodology that aims to visualize high dimensional data through 
topological segmentation of multidimensional surfaces. In our applications, such multi-dimensional 
spaces are determined by the set of  uncertain parameters  while safety related outcomes  
, such as maximum core temperature, are considered for each simulation. Our topological tools aim to 
reconstruct the topological structure of  (i.e., the response surface) in this  dimensional 
space: 

 

We consider an alternative method for analyzing high dimensional data that models the simulation 
data as a scalar function  defined on a finite set of points  in  with scalar output,  in . In this way, 
we can then summarize the structure of the data with respect to the topology imposed by a variable of 
interest that is classified as the output of our constructed function. 

Various topological constructs and approximations exist that can be used to impose a structure on 
the arbitrary dimension, functional data, such as the contour tree [35], the reeb graph [36], and the Morse-
Smale complex [37]. This paper makes use of the approximated Morse-Smale technique first established 
in [38] to present a hierarchical partitioning of the data based on estimated gradient flow behavior of the 
sampled data. In this way, we can still present the data in the same manner as the hierarchical clustering, 
but also take advantage of the scalar function property to offer alternative visualizations. A summary of 
this technique follows. 

We partition the points in  based on their function values and gradient behavior using an 
approximated hierarchical Morse-Smale complex. That is, at the finest level of detail, points belong to the 
same cluster if they share gradient flow to the same local maximum and local minimum. Gradient flow is 
estimated by imposing a neighborhood graph on the data and using the steepest ascending/descending 
neighbor of a point to represent the gradient at each point sample. In this way, each point can be traced to 
a local maximum or minimum. 

system outcome  f uncertain parameters
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We can then merge clusters based on the persistence of their corresponding local extrema. We 
define persistence for an extremum as the minimum difference in function value between the extremum 
and its neighboring saddle points. We assume every saddle point is a simple saddle, thus every saddle will 
pair two local maxima or two local minima, and the merging of clusters is unambiguous as the adjusted 
gradient will be simulated to flow to the higher persistence extremum after two clusters are merged. An 
intuitive two-dimensional example is shown in Figure 29 where local maxima of various sizes are 
merged, in order, with a neighboring saddle point redirecting upward flow toward the maximum also 
sharing the same saddle point. The grey lines simulate this redirected flow and the circles represent the 
saddle locations. At each refinement, we simulate the new gradient flow with a simplified surface model 
in the figure. 

 

Figure 29 – A simulation of persistence simplification showing how the local maxima of this two 
dimensional function are hierarchically merged with a neighboring saddle redirecting upward flow 

to a neighboring maximum that shares the saddle point 

We further the analysis by computing a summary curve via the following three step process: (1) 
perform inverse regression with each clusters data, (2) project the curves embedded in  to a two-
dimensional viewing window using PCA [22], and (3) align the curves to meet at their shared extrema to 
maintain the coherency of the topological structure extracted. The resulting topological skeleton 
visualization encodes the projected average of each levelset of a cluster, a direction-independent estimate 
of the spread in domain space at each levelset presented as a transparent halo, and the sampling density at 
each levelset of a cluster encoded as the darkness of the halo. Figure 29 details each of these visualization 
components given a 2D example surface. 

As a supplementary view, we project the data colored by its segment as well as the high-dimensional 
curve summary onto a set of stacked two-dimensional scatter plots. The horizontal axis is the output 
dimension which is aligned on all plots, and the separate vertical axes of each plot are the individual input 
dimensions. The curve summary gives the average location at each levelset and each curve now uses a 
dimension-specific standard deviation for the width of the transparent halo. Furthermore, the color of the 
halo is held constant as the sampling density is better encoded by the overlaying of the data points 
themselves. In this way, we can begin to distinguish with respect to each individual dimension how the 
segments differ. Figure 30 shows a labeled version of this interface. The topological skeleton makes it 
more clear at a glance that there are four distinct segments, yet gives no underlying information about the 
sampled data in each cluster. This is why we believe that the combination of these techniques represents 
the best view of the data. More details of the visualization pipeline as well as additional views using the 
same input data format are described in prior works [38,39]. 
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Figure 30 – An abstract view of our visualization technique on a 2D smooth surface: The surface is 
first segmented into areas of uniform gradient flow (a), then each levelset (modeled by a white line) 

is averaged to a single point and consecutive levelsets are connected to form a curve per segment 
(orange curves), and finally our result is shown with labels for each visualization cue 

We apply clustering algorithms [40,41] based on the Morse-Smale complex [37,42] on the dataset 
obtained from RAVEN for the BWR SBO analysis [43]. In essence, we aim to reconstruct the response 
surface (i.e., max clad temperature) topological structure in a d-dimensional space where d is the number 
of uncertain parameters. 

We further obtain a topological summary for each cluster and try to infer the correlations between 
simulation parameters and system observations. The objective is to find the combination of conditions (in 
the form of input simulation parameters) that can cause core damage. Before analysing the data we 
performed a series of pre-processing procedures: 

Data standardization: The above data is pre-processed with a standardization process. Since 
different parameters may be measured on different scales and the range of values differ from each 
dimension, some parameters may dominate the results of the analysis. We employ a z-score data 
standardization process so that all dimensions are on the same scale. For values of each 
dimension, we subtract the mean and divide by the standard deviation.  

Dimension reduction: Upon further observations of the nature of the simulation, we further 
transform the data by reducing the number of dimensions. In particular, we introduce 3 new 
dimensions by combining 3 pairs of dimensions from the raw dataset: 

o ACPowerRecoveryTime: min {RecoveryTimeDG; OFFsitePowerRecoveryTime}. 

o SRVstuckopen: min {SRV1stuckopen; SRV2stuckopen}. 

o CoolingFailtoRunTime: max {HPCIFailToRunTime; RCICFailToRunTime}. 

The 9D case includes then the following input variables: 

1. FailureTimeDG 

2. ACPowerRecoveryTime 

3. SRVstuckOpenTime 

Local maximum 

Local minimum 

18#

Range space color mapping shows 
the range of the selected crystal 

and the selected output level

Luminance of edge 
signifies sampling densityVarying width signifies 

spread of data

(b)(a) (c)
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4. cladFailureTemperature 

5. CoolingFailtoRunTime 

6. Reactor power 

7. ADSactivation-TimeDelay 

8. firewaterTime 

9. TotalBatteryLife 

The output variable is the maxCladTemp (MT). 

 
Figure 31 – Topological summary 

Using HDViz, from 9D-MT-all-3C, we were able to obtain 3 clusters as shown in Figure 32. The 
topological structure of the clad max temperature as a 9-dimensional surface was characterized by a 
single local minimum and 3 local maxima as indicated in Table 4.  

Figure 32 shows the projection of the three crystals for each dimension including their regression 
curves: x-axis corresponds to output variable (maximum clad temperature) while y-axis corresponds to 
input variable. From Figure 32, by looking at the regression curve obtained, we can see that a high value 
of clad temperature is reached, for all 3 crystals, for a late AC recovery time. As expected a late AC 
recovery time is a necessary condition to reach core damage. The same conclusions can be drawn for FW 
injection time, a late FW injection time guarantees core damage as well.  

Failure time of DGs differentiates the three crystals, i.e., a late DG failure time is not sufficient to 
guarantee system success. In fact, by looking at the green crystal regression curve, a late failure time of 
DGs coupled with an early SRV stuck-open event and an early failure of the high-pressure injection 
system (both RCIC and HPCI) leads to core damage. By looking at the regression curve of the purple 
crystal, core damage condition was reached for an early DGs failure time and an early failure of the high-
pressure injection system (both RCIC and HPCI). 
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Table 4 – Minima and maxima of the crystals of Figure 10 

Crystal color (see Figure 10) Min Max 
Red 1008.80 2600.09 
Green 1008.80 2597.20 
Blue 1008.80 2534.16 

 

Figure 32 – Inverse coordinate plots with (left) and without (right) points projection 
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7. TEMPORAL SURROGATE MODEL 

In the previous section we introduced the concept of response surface methods and surrogate models 
as tools to predict an approximated  (which represents, for example, a simulated system response 
under an accident scenario) for a set of conditions specified in . The vector  contains elements such 
as timing and sequencing of events (e.g., recovery time of AC power, failure time of core cooling 
injection). Note that the value  is a scalar and, thus, does not contain any temporal evolution type of 
information.  

We extend the concept of ROM in order to be able to handle time dependent : given ,  is 
a time dependent variable. In this case, the training consists of  points: 

 Eq. 8 
 

Our approach is to start by dividing the temporal scale into intervals (assumed here to be of equal length 
but it is not required): 

 Eq. 9 

For each time point  we consider the subset of points: 

 Eq. 10 

and we build the corresponding  . Thus, now we have a set of ROMs for each time point 
. The temporal predictor  is simply the vector of: 

 Eq. 11 

In our applications, when each of the data points has been generated by safety analysis codes (e.g., 
RELAP): 

 is the configuration of the simulation (e.g., timing of events, values associated with uncertain 
parameters) 

 is the simulation associated with . 

We performed a few tests with different types of datasets in order to identify performances and 
limitations of this algorithm. Figure 33 (left) shows a set of  simulations, i.e. 

, generated by sampling two stochastic parameters, i.e. .  

We initially divided the time scale uniformly [0,2500] into  intervals and for each time point 
 we considered the data points  and built the reduced 

order models .  

We then tested the temporal predictor: 

 Eq. 12 

for several  and compared them with the simulated  . 
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Figure 33 (right) shows the predicted scenario  (green line) and the actual simulated scenario 
. For this particular case we built  using Gaussian Process Models as a basic ROM. A 

useful feature is that these algorithms are also capable of providing the uncertainty associated with the 
predicted results. 

 

 

Figure 33 – Initial protoype results of temporal surrogate model 

 

7.1 RAVEN Implementation 

In order to allow the RAVEN statistical framework to create temporal surrogate models, we started in 
this fiscal year to develop the needed basic software infrastructure. In the following fiscal year plan to 
extend such capabilities. This development was accomplished by modifying the ROM class to: 

Accept a set of multivariate histories as training data 

Instantiate and train a matrix of surrogate models 

Create a multivariate history as predicted data 

The only requirement needed is that the set of training histories contains the identical set of input/output 
variables. 

We slightly modified the algorithms shown in Eq. 11 in order to give the flexibility to the algorithm 
to accept histories that have different time length. Depending on the final outcome or depending to other 
conditions the temporal length of each simulation run may change considerably. 

The algorithm performs the following: 

Each history is sampled in time using the same number of sampling points. Two sampling 
strategies are available (see Figure 34): 

o Uniform: the temporal distance between two samples is constant 
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o Derivative: the sample locations are concentrated in regions with higher temporal 
derivatives. These can be based on both the first or second derivative. 

The temporal predictor is built according to Eq. 11 but with the assumption that each element 
 represents the surrogate model for the sample  

Since the time location of each sample  changes from history to history an additional vector 
of surrogate models  is created: 

 Eq. 13 

where each element   is a surrogate model that predicts the time location of each 
sample  

Full prediction is performed by solving the system of surrogate models 

 Eq. 14 

 

 

Figure 34 – Example of time series sampling steategies: uniform (top left), first-derivative based 
(top right) and second-derivative based (bottom). 
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We performed an initial testing of the developed code on a simple test case: a heating-cooling lumped 
system. This system behaves as follows (see Figure 35-left): 

The initial condition is fixed: temperature fixed at 800 Fahrenheit. The cooling system slowly 
decreases the system temperature 

At time , the cooling stops and the system heats up, i.e., the system temperature 
increases 

At time , the cooling restarts and the system temperature decreases 

Two uncertain parameters have been chosen:  and . A training set has been created on a 
 grid in the 2-dimensional input space (see Figure 35-right). We chose to create a temporal surrogate 

model based on Gaussian Process models by using 10 uniform time discretizations (i.e., ). As 
can be seen from Figure 36, the predicted and the “true” transient match pretty well. 

 

 

Figure 35 – Example of transient as function of two parameters, tREC and tSBO, (left) and plot of 
the training data (right) 

 

tRec tSBO 
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Figure 36 – Comparison of predicted transients generated by the temporal surrogate model (dots) 
and the true transients (line) for two different sampling strategies (  and  sampling grid) 

 

 

  



 

44 

8. SURROGATE MODELS IN RAVEN 

In this section we describe a subset of surrogate models that are available within RAVEN. We 
chose a limited set of surrogate models that can be of interest for RISMC type of analyses. 

 

8.1 KNN Classifier and KNR Regressor 

The K Nearest Neighbor algorithm [25] is a non-parametric method used for both regression and 
classification. The only input parameter is the variable K which indicates the number of neighbors to be 
considered in the classification/regression process. The special case where the class is predicted to be the 
class of the closest training sample (i.e. when K = 1) is called the nearest neighbor algorithm. In binary 
(two class) classification problems, it is helpful to choose k to be an odd number as this avoids tied votes. 
The output depends on whether KNN is used for classification or regression: 

In KNN classification, the output is a class membership. An object is classified by a majority vote 
of its neighbors, with the object being assigned to the class most common among its K nearest 
neighbors (K is a positive integer, typically small). If K = 1, then the object is simply assigned to 
the class of that single nearest neighbor. 

In KNN regression, the output is the property value for the object. This value is the average of the 
values of its K nearest neighbors. 

Both for classification and regression, it can be useful to assign weight to the contributions of the 
neighbors, so that the nearer neighbors contribute more to the average than the more distant ones. For 
example, a common weighting scheme consists in giving each neighbor a weight of 1/d, where d is the 
distance to the neighbor. 

 

8.2 Support Vector Machines 

Given a set of N multi-dimensional samples  and their associated results  (e.g.,  
for system success and  for system failure), the SVM algorithm [44,45] finds the boundary (i.e., 
the decision function) that separates the set of points having different . The decision function lies 
between the support hyper-planes, which are required to: 

Pass through at least one sample of each class (called support vectors) 

Not contain samples within them 

For the linear case, see Figure 37, the decision function is chosen such that distance between the support 
hyper-planes is maximized.  

From a mathematical point of view, the hyper plane can be written in this form: 

 Eq. 15 
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Given this formulation, the SVM algorithm aims to: 

 

 
Eq. 16 

Without going into the mathematical details, the determination of the hyper-planes is performed 
recursively and updated every time a new sample has been generated. Figure 37 shows the SVM decision 
function and the hyper-planes for a set of points in a 2-dimensional space having two different outcomes: 

 (green) and  (red). 

The transition from a linear to a generic non-linear hyper-plane is performed using the kernel trick: 
i.e., by projecting of the original samples into a higher dimensional space known as featured space 
generated by kernel functions : 

 Eq. 17 

 

 

Figure 37 – Limit surface evaluation using SVMs 

 

8.3 Gaussian Process Models 

Gaussian processes (GPs) [21] are algorithms that extend multivariate Gaussian distributions to 
infinite dimensionality. A Gaussian process generates a dataset located throughout some domain such that 
any finite subset of the range follows a multivariate Gaussian distribution. Now, the  observations in an 
arbitrary data set, , can always be imagined as a single point sampled from some 
multivariate ( -variate) Gaussian distribution. 
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What relates one observation to another in such cases is just the covariance function, . A 
popular choice is the squared exponential: 

 Eq. 18 

 

where the maximum allowable covariance is defined as  — this should be high for functions which 
cover a broad range on the y axis. If , then  approach this maximum meaning  is very 
correlated to . On the other hand, if  is very distant from , then , i.e. the two points 
cannot see each other. So, for example, during interpolation at new  values, distant observations will 
have negligible effect. How much effect this separation has will depend on the length parameter . 

Each observation  can be thought of as related to an underlying function  through a Gaussian 
noise model: 

 Eq. 19 
 

The new kernel function can be written as: 

 Eq. 20 

 

So given  observations , the objective is to predict the value  at the new point . This process 
is performed by following this sequence of steps: 

1. Calculate three matrices: 

 Eq. 21 

 

 Eq. 22 
 

 Eq. 23 
 

2. The basic assumption of GPM is that 

 Eq. 24 

 

3. The estimate  for  is the mean of this distribution 

 Eq. 25 
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4. The uncertainty associated to the estimate  can be expressed in terms of variance of : 

 Eq. 26 
 

 

8.4 Generalized Polynomial Chaos 

In general, Polynomial Chaos Expansion (PCE) methods seek to represent the simulation code as a 
combination of polynomials of varying degree and combination in each dimension of the input space. 
Originally Wiener proposed expanding in Hermite polynomials for Gaussian-normal distributed variables. 
Askey and Wilson generalized this method for a range of Gaussian-based distributions with 
corresponding polynomials, including Legendre polynomials for uniform distributions, Laguerre 
polynomials for Gamma distributions, and Jacobi polynomials for Beta distributions. 

In each of these cases, a probability-weighted integral over the distribution can be cast in a way 
that the corresponding polynomials are orthogonal over the same weight and interval. These chaos 
Wiener-Askey polynomials were used by Xiu and Karniadakis to develop the generalized polynomial 
chaos expansion method (gPC), including a transformation for applying the same method to arbitrary 
distributions (as long as they have a known inverse CDF). Two significant methodologies have grown 
from gPC application. The first makes use of Lagrange polynomials to expand the original function or 
simulation code, as they can be made orthogonal over the same domain as the distributions; the other uses 
the Wiener-Askey polynomials.  

We consider a simulation code that produces a quantity of interest  as a function  whose 
arguments are the uncertain, distributed input parameters . A particular realization 

 of  is expressed by , and a single realization of the entire input space results in a solution to the 
function as ). We acknowledge obtaining a realization of  may take considerable 
computation time and effort, and may be solved nonlinearly and without analytic solution. There may be 
other input parameters that contribute to the solution of ; we neglect these, as our interest is  in the 
uncertainty space. In addition, it is possible that the quantity of interest is an integrated quantity or 
some norm of a value that is temporally or spatially distributed; in any case, we restrict  to a 
single scalar output. 

We expand  in orthonormal multidimensional polynomials , where  is a multi-index 
tracking the polynomial in each axis of the polynomial Hilbert space, and  is constructed as 

 Eq. 27 

 

where  is a single-dimension Wiener-Askey orthonormal polynomial of order  and 
. The gPC for  using this notation is 

 Eq. 28 
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where  is a weighting polynomial coeffcient. The polynomials used in the expansion are determined by 
the set of multi-indices , where  is a truncation order for isotropic methods. In the limit that  
contains all possible combinations of polynomials of any order, Eq. 28 is exact. Practically, however,  is 
truncated to some finite set of combinations. 

Using the orthonormal properties of the Wiener-Askey polynomials, 

 Eq. 29 

 

where  is the combined PDF of ,  is the multidimensional domain of , and  is the Dirac delta, we 
can isolate an expression of the polynomial expansion coefficients. 

We multiply both sides of Eq. 28 by , integrate both sides over the probability weighted 
input domain, and sum over all  to obtain the coeffcients, sometimes referred to as polynomial 
expansion moments, 

 Eq. 30 

 

where we use the angled bracket notation to denote the probability-weighted inner product, 

 Eq. 31 

 

When  has an analytic form, these coefficients can be solved by integration; however, in 
general other methods must be applied to numerically perform the integral. While tools such as Monte 
Carlo integration can be used to evaluate the integral, we can harness the properties of Gaussian 
quadratures because of the probability weights and domain. 

 

8.5 Support Vector Regressor 

A version of SVM for regression called support vector regression (SVR) was proposed in [47]. The 
model produced by support vector classification (as described above) depends only on a subset of the 
training data, because the cost function for building the model does not care about training points that lie 
beyond the margin. Analogously, the model produced by SVR depends only on a subset of the training 
data, because the cost function for building the model ignores any training data close to the model 
prediction.  
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Training the original SVR means solving: 

 

 

Eq. 32 

where  is a training sample with target value . The inner product  is the prediction for that 
sample, and  is a free parameter that serves as a threshold: all predictions have to be within an  range of 
the true predictions. 

 

8.6 Sheppard Method 

The Inverse-Weight interpolator [48], also known as Sheppard interpolator, is ROM completely 
different from SVM. It performs predictions not on binary but on continuous outcomes. The starting point 
is a set of  data points  where  are the coordinate in the input space  and  
is the outcome. The Inverse-Weight interpolator can be represented as a function  that, given a 
coordinate in the input space , generates a prediction on : 

 Eq. 33 
 

The prediction  is performed by summing all data points  weighted by a 
weighting parameter  as follows: 

 Eq. 34 

 

where  is the inverse of the distance between  and : 

 Eq. 35 

 

Large values of  assign greater weight  to data points  closest to , with the result turning 
into a mosaic of tiles (i.e., Voronoi diagram) with nearly constant interpolated value. 

  



 

50 

9. COMPARISON AND CONVERGENCE STUDIES OF CLASSIFIERS 

This section focus in detail on some of the classifiers that are available within RAVEN. In 
particular we focus on SVM (see Section 9.1) and KNN (see Section 9.2). For both algorithms we tested 
their adaptive sampling performances using three different test cases: Rosenbrock function, triangular 
function and the RELAP-7 TMI case. In addition we performed a series of convergence studies for both 
SVM and KNN. A summary of the structure of this section is shown below: 

Classifier Test Cases Convergence study Rosenbrock Triangular RELAP-7 TMI 
SVM Section 9.1.1 Section 9.1.2 Section 9.1.3 Section 9.1.4 
KNN Section 9.2.1 Section 9.2.2 Section 9.2.3 Section 9.2.4 
 

9.1 SVM Classifier 

The first classifier to be tested is the SVM with Gaussian Kernel (i.e., radial basis function - rbf). In 
the RAVEN input file such surrogate model is specified as below: 

<ROM name="AccelerationROM" subType="SciKitLearn">
  <Features>x1,x2</Features> 
  <Target>goalFunction</Target>
  <SKLtype>svm|SVC</SKLtype> 
  <kernel>rbf</kernel> 
  <gamma>0.1</gamma> 
  <C>10.0</C> 
</ROM> 

RAVEN Input block 1 – SVM definition for the Rosenbrock test 

 

9.1.1  Rosenbrock Test 

The Rosenbrock test was performed by setting the following information in the RAVEN input file: 

<Convergence limit = "3000" weight = "value" persistence = "0">1.0e-
4</Convergence>

RAVEN Input block 2 – Convergence settings for the Rosenbrock test: SVM case 

An initial grid  was used as training set. The limit surface was obtained after 645 samples and the 
obtained expected value was 2.42 E-01 (theoretical values equal to 2.43 E-1). Figure 38 and Figure 39 
shows the evolution of the estimate of the limit surface and the locations of the samples throughout the 
adaptive sampling process. 
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Figure 38 – SVM: calculation evolution of the Rosenbrock limit surface  
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Figure 39 – SVM: calculation evolution of the Rosenbrock limit surface 
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9.1.2 Triangular Test 

We tested again SVM using Gaussian Kernel as indicated below.   
<ROM name="AccelerationROM" subType="SciKitLearn">
  <gamma>50.0</gamma> 
  <Features>x1,x2</Features> 
  <Target>goalFunction</Target>
  <SKLtype>svm|SVC</SKLtype> 
  <kernel>rbf</kernel> 
  <C>1.0</C> 
</ROM> 

RAVEN Input block 3 – SVM definition for the triangular test 
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Figure 40 – SVM: calculation evolution of the triangular limit surface 
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Figure 41 – SVM: calculation evolution of the triangular limit surface 
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<Convergence limit = "3000" weight = "value" persistence = "0">5.0e-
5</Convergence>

RAVEN Input block 4 – Convergence settings for the triangular test: SVM case 

After an initial grid of , convergence was obtained after 199 samples. The obtained 
expected value was 9.05592 E-01. Figure 40 and Figure 41 shows the evolution of the estimate of the 
limit surface and the locations of the samples throughout the adaptive sampling process. 

 

 

9.1.3 TMI SBO Test 

For the TMI SBO test, we used SVM using Gaussian Kernel as indicated below.   

<ROM name="AccelerationROM" subType="SciKitLearn"> 
  <Features>x1,x2</Features> 
  <Target>goalFunction</Target>  
  <SKLtype>svm|SVC</SKLtype> 
  <kernel>rbf</kernel> 
  <gamma>10.0</gamma> 
  <C>0.1</C> 
</ROM> 

RAVEN Input block 5 – SVM definition for the triangular test 

<Convergence limit = "3000" weight = "value" persistence = "0">5.0e-5</Convergence>

RAVEN Input block 6 – Convergence settings for the TIM SBO test: SVM case 

After an initial grid of 6x6, convergence was obtained after 270 samples. The obtained expected 
value was 2.5762 E-1 (theoretical value equal to 2.57531 E-1). Figure 42 and Figure 43 show the 
evolution of the estimate of the limit surface and the locations of the samples throughout the adaptive 
sampling process. 
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Figure 42 – SVM: calculation evolution of the TMI SBO limit surface 
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Figure 43 – SVM: calculation evolution of the TMI SBO limit surface 

 

9.1.4 Convergence study on SVM 

We performed a series of convergence studies to test how SVM performs using the TMI SBO test 
case for different values of Gamma and C. We were interested into observing the sample locations and the 
relative error into the evaluation of the limit surface. 

For all cases we set the adaptive sampling convergence criteria as follows: 
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<Convergence limit = "3000" weight = "value" persistence = "0">5.0e-5</Convergence>

RAVEN Input block 7 – Convergence settings for the triangular test: SVM case 

Figure 45 and Figure 44 show the sample locations for Gamma = 1.0 and Gamma =10.0 for several 
values of C (0.1, 1.0, 10.0, 100.0 and 1000.0). All cases started from an initial set of training points on a 
6x6 grid. Note how by increasing the value of C, fewer degrees of freedom are given to the limit surface 
to change and thus, fewer samples are needed. 

 

 

Figure 44 – Sample locations for TMI SBO limit surface using SVM with gamma = 10.0: C= 1.0 
(top left), 10.0 (top right), 100.0 (bottom left) and 1000.0 (bottom right) 
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Figure 45 – Sample locations for TMI SBO limit surface using SVM with Gamma = 1.0: C= 0.1 (top 
left), 1.0 (top right), 10.0 (mid left), 100.0 (mid right) and 1000.0 (bottom) 

We additionally performed a more exhaustive testing by measuring the relative error associated to 
the estimate of the limit surface again by using the TMI SBO test case. We measured such relative error 
for several values of both Gamma and C; this is shown in Figure 46. Note that not all combinations of 
gamma and C values are possible. 
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Figure 46 – SVM: plot of max relative error as functions of C and gamma

 

 

9.2 KNN Classifier 

The identical tests performed in Section 9.1 for the SVM classifier were performed also for the 
KNN classifiers. The results are shown in the next four sections 

9.2.1 Rosenbrock Test 

Regarding the Rosenbrock test we chose a KNN algorithms with a K = 5 as shown below: 

<ROM name="AccelerationROM" subType="SciKitLearn"> 
   <Features>x1,x2</Features> 
   <Target>goalFunction</Target> 
   <SKLtype>neighbors|KNeighborsClassifier</SKLtype> 
   <n_neighbors>5</n_neighbors> 
</ROM> 

RAVEN Input block 8 – KNN definition for the Rosenbrock test 

Convergence was obtained after 675 samples and the expected value was 2.21889 E-01.  
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Figure 47 – KNN: calculation evolution of the Rosenbrock limit surface 
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Figure 48 – KNN: calculation evolution of the Rosenbrock limit surface 

 

9.2.2 Triangular Test 

Regarding the Triangular test we chose a KNN algorithm with a lower value of K = 2 as shown 
below. This was due to the fact that a lower value of K would increase the performances of the algorithm. 
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<ROM name="AccelerationROM" subType="SciKitLearn"> 
   <Features>x1,x2</Features> 
   <Target>goalFunction</Target> 
   <SKLtype>neighbors|KNeighborsClassifier</SKLtype> 
   <n_neighbors>2</n_neighbors> 
</ROM> 

RAVEN Input block 9 – KNN definition for the Rosenbrock test 

After an initial grid , convergence was obtained after 556 samples and the expected value was 
9.04178 E-01 as shown in Figure 49 and Figure 50. 
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Figure 49 – KNN: calculation evolution of the Triangular limit surface 
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Figure 50 – KNN: calculation evolution of the triangular limit surface 
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9.2.3 TMI SBO Test 

Regarding the TMI SBO test we chose a KNN algorithm with a value of K = 5 as shown below: 

<ROM name="AccelerationROM" subType="SciKitLearn">
   <Features>x1,x2</Features> 
   <Target>goalFunction</Target> 
   <SKLtype>neighbors|KNeighborsClassifier</SKLtype> 
   <n_neighbors>5</n_neighbors> 
</ROM> 

RAVEN Input block 10 – KNN definition for the TMI SBO test 

After an initial grid , convergence was obtained after 328 samples; expected value was 2.56732 E-1. 
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Figure 51 – KNN: calculation evolution of the TMI SBO limit surface 
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Figure 52 – KNN: calculation evolution of the TMI SBO limit surface 
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9.2.4 Convergence study on KNN 

The convergence study on the KNN algorithm was performed by changing the value of K. The 
relative error in the evaluation of the limit surface and the number of samples required are summarized in 
Table 5 and pictured in Figure 53. 

<Convergence limit="3000" weight="value" persistence="0">1.0e-4</Convergence>

RAVEN 11 – Convergence settings for the TMI SBO test: KNN case 

Table 5 – KNN classifier: number of iterations and relative error for the TMI SBO test case as 
function of K 

K # iterations Relative error (%) 
1 218 0.392574098 
2 238 0.20347065 
3 175 0.480330523 
4 178 0.781653471 
5 128 0.249290377 
6 145 0.050867663 
7 137 1.384687669 
8 153 0.458973871 
9 135 0.376653684 

 

 

Figure 53 – KNN classifier: plot of the number of iterations and relative error for the TMI SBO test 
case as function of K 
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Figure 54 – KNN classifier: plot of the limit surface and the sample locations for the TMI SBO test 
case as function of k 
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Figure 55 – KNN classifier: plot of the limit surface and the sample locations for the TMI SBO test 
case as function of k 
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Figure 56 – KNN classifier: plot of the limit surface and the sample locations for the TMI SBO test 
case as function of K   
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10. COMPARISON AND CONVERGENCE STUDIES OF REGRESSORS 

Regarding the set of regressors available in RAVEN we chose a subset of them: GPM, KNR, SVR, 
Sheppard and gPC. For all of them we performed a series of test case using the Rosenbrock function, the 
Paraboloid and the RELAP-7 PWR natural circulation loop and a set of convergence studies. A map of 
the structure of this report is shown below. 

 Test Case Convergence Study  Rosenbrock Paraboloid RELAP-7 loop 
GPM Section 10.1.1 Section 10.1.2 Section 10.1.3 Section 10.1.4-5 
KNR Section 10.2.1 Section 10.2.2 Section 10.2.3 Section 10.2.4 
SVR Section 10.3.1 Section 10.3.2 Section 10.3.3 Section 10.3.4 
Sheppard Section 10.4.1 Section 10.4.2 Section 10.4.3 Section 10.4.4 
gPC Section 10.5.1 Section 10.5.2 Section 10.5.3 Section 10.5.4 
 

10.1 Gaussian Process Models 

10.1.1 Rosenbrock Test 

We tested the GPM surrogate model the Rosenbrock function starting from a  grid training set 
as shown below: 

<ROM name="ROM_GPM" subType="SciKitLearn"> 
   <SKLtype>GaussianProcess|GaussianProcess</SKLtype> 
   <Features>x1,x2</Features> 
   <Target>y1</Target> 
   <theta0>1e-2</theta0> 
   <thetaL>1e-4</thetaL> 
   <thetaU>1e-1</thetaU> 
   <nugget>0.00000000000001</nugget> 
</ROM> 

RAVEN Input block 12 – GPM definition for the Rosenbrock function test 

 

Figure 57 – GPM: Comparison of the response function for the Rosenbrock test case 
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Figure 58 – GPM: relative error for the Rosenbrock test case 

Regression results are shown in Figure 57 and Figure 58. Note from Figure 58, the low relative 
error which has a maximum value equal to 0.007068. 

10.1.2 Paraboloid test 

The scope of the Paraboloid test case is to compare not the regression error in the reconstruction of 
the response surface but to evaluate the impact of such error when UQ and SA analyses are performed. In 
Figure 59 the theoretical and the reconstructed functions are shown. The regression is performed from an 
initial grid . 

Table 6 compares the first three statistical moments, the sensitivity and the Pearson coefficients 
obtained from the GPM surrogate model and the theoretical ones. In addition, Figure 60 shows a 
comparison of the distributions of y1. Note how the low relative error in the regression process strongly 
reduces the error in the evaluation of the statistical moments. 
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Figure 59 – GPM: Comparison of the response function for the paraboloid test case 

Table 6 – GPM: Comparison of the statistical moments, Pearson and sensitivity coefficients for y1 
for the paraboloid test case 

  Reference ROM Relative Error 
mu 5.18212435 5.18212456 -4.05239 E-08 
sigma 1.38749472 1.38749458 1.00901 E-07 
skewness 0.339384699 0.339384298 1.18155 E-06 
x1 sensitivity 5.99808493 5.99808449 7.33567 E-08 
x2 sensitivity 4.00024747 4.00024718 7.24955 E-08 
x1 Pearson 0.825704716 0.825704743 -3.26993 E-08 
x2 Pearson 0.552788789 0.552788807 -3.25622E-08 

 

 

Figure 60 – GPM: Comparison of the pdfs of y1 for the paraboloid test case 
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10.1.3 PWR Natural Circulation Loop test 

We performed the same analysis shown in Section 10.1.2 but using the RELAP-7 PWR natural 
circulation loop and the GPM surrogate model as shown below (initial training grid was ): 

<ROM name="ROM_GPM" subType="SciKitLearn"> 
   <SKLtype>GaussianProcess|GaussianProcess</SKLtype> 
   <Features>Materials|fuel-mat|k,Components|reactor|power</Features> 
   <Target>PeakFuelTemperature</Target> 
   <theta0>1e-2</theta0> 
   <thetaL>1e-4</thetaL> 
   <thetaU>1e-1</thetaU> 
   <nugget>0.00000000000001</nugget> 

</ROM>

RAVEN Input block 13 – GPM definition for the Rosenbrock PWR Natural Circulation Loop test 

 

Figure 61 – GPM: Comparison of the response function for the PWR natural circulation loop test 
case 

 

Figure 62 – GPM: Relative error response function for the PWR natural circulation loop test case 

The response functions comparison is shown in Figure 62 while the plot of the relative error is 
shown in Figure 63 (the maximum relative error was 0.0037668). Table 7 summarizes the comparison of 
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the statistical moments and sensitivity coefficients. Figure 63 shows the plot of the obtain distribution of 
max fuel temperature given the uncertainties of the two input parameters. 

 

 

 

Table 7 – GPM: Comparison of the statistical moments, Pearson and sensitivity coefficients for y1 
for the PWR natural circulation loop test case 

  RELAP-7 ROM Relative Error 
mu 5.84550604 E+02 5.84550376 E+02 3.90043 E-07 
sigma 3.46907782 E-01 3.47242245 E-01 -0.000964127 
skewness 3.44692439 E-01 3.43410411 E-01 0.003719339 
K sensitivity -6.66368173 E-01 -6.67137762 E-01 -0.001154901 
P sensitivity 7.23160579 E-03 7.23424644 E-03 -0.000365154 
K pearson -9.05607661 E-01 -9.05780132 E-01 -0.000190448 
P pearson -3.97276934 E-04 -3.97276934 E-04 0 

 

 

Figure 63 – GPM: Comparison of the pdfs of peak fuel temperature for the PWR natural 
circulation loop test case 

 

10.1.4 Convergence Study on GPMs: Initial Grid 

The first convergence study was performed by changing the number of samples used in training 
phase. The rationale is that an increasing number of training samples decreases the max relative error in 
the reconstruction of the response function. 
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<ROM name="ROM_GPM" subType="SciKitLearn"> 
    <SKLtype>GaussianProcess|GaussianProcess</SKLtype> 
    <Features>Materials|fuel-mat|k,Components|reactor|power</Features> 
    <Target>PeakFuelTemperature</Target> 
    <theta0>1e-2</theta0> 
    <thetaL>1e-4</thetaL> 
    <thetaU>1e-1</thetaU> 
    <nugget>0.00000000000001</nugget> 

     </ROM>

RAVEN Input block 14 – GPM definition for the convergence study on the initial grid 

As predicted the results are shown in Table 8 and they are plotted in Figure 64. 

Table 8 – GPM: Max relative error as function of the initial grid size for the Rosenbrock test case 

Grid size Relative error 
3 0.776149657892 
5 0.00706802106224 
7 0.000239270887758 
9 8.7723003133 E-05 
11 1.8937001264 E-05 
14 6.62039016827 E-06 

 

 

Figure 64 – GPM: Relative error for the Rosenbrock test case as function of the size of the initial 
grid
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10.1.5 Convergence Study on GPMs: Internal parameters 

The second convergence study focuses on the internal parameters of the GPM surrogate model. For 
the scope of this report we focused only on the parameter theta. The obtained results are shown in Figure 
65 and summarized in Figure 66. Note that a higher value of theta forces the obtained reconstruction to be 
smoother, i.e., with less degree of freedoms. 

Theta Max Relative error Relative error 

0.01 0.00426246061374 

0.1 0.0395741607288 

 

1 0.232405124639 

 

10 0.566013953719 

 
Figure 65 – GPM: max value and plot of the relative error as function of theta for the Rosenbrock 

test case 
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Figure 66 – GPM: max relative error as function of theta for the Rosenbrock test case 

 

10.2 K-Neighbors Regressor (KNR) 

The KNR regressor, as shown in Section 8.1, is very similar to the KNN algorithm and hence we 
expect performances similar to the classifier one. 

10.2.1 Rosenbrock Test 

 Starting from a grid  we perform the first regression test on a Rosenbrock test with a value of 
K equal to 3 as shown below: 

<ROM name="ROM_KNR" subType="SciKitLearn"> 
   <SKLtype>neighbors|KNeighborsRegressor</SKLtype> 
   <Features>x1,x2</Features> 
   <Target>y1</Target> 
   <n_neighbors>3</n_neighbors> 
   <algorithm>kd_tree</algorithm> 
</ROM> 

RAVEN Input block 15 – KNR definition for the Rosenbrock function test 

The reconstruction of the Rosenbrock function was very poor as shown in Figure 67. The plot of 
the relative error is shown in Figure 68. Such big errors are due to the fact that KNR is not actually based 
on a regression or interpolation kernel per se, but it is just averaging the value of the K nearest neighbors.  
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Figure 67 – KNR: Comparison of the response function for the Rosenbrock test case 

 

Figure 68 – KNR: Relative error for the Rosenbrock test case 

10.2.2 Paraboloid test 

We performed the second test on the Paraboloid test case in order to evaluate how the regression 
error propagates in the UQ/SA phase. Results are shown in Figure 69 Figure 70 and summarized in Table 
9. Note even though the regression error is high, the propagation of uncertainties of the two uncertain 
input parameters smooth these error. However note how the distribution of y1 in Figure 70 is fairly 
different from the theoretical one. 
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Figure 69 –  KNR: Comparison of the response function for the paraboloid loop test case 

Table 9 – KNR: Comparison of the statistical moments, Pearson and sensitivity coefficients for y1
for the paraboloid test case

  Reference ROM Relative Error 
mu 5.18212435 5.23077005 -0.009387212 
sigma 1.38749472 1.40330500 -0.01139484 
skewness 0.339384699 0.334100967 0.015568563 
x1 sensitivity 5.99808493 5.97614374 0.003658033 
x2 sensitivity 4.00024747 3.98495764 0.003822221 
x1 Pearson 0.825704716 0.813415336 0.014883505 
x2 Pearson 0.552788789 0.544472021 0.01504511 

 

 

Figure 70 – KNR: Comparison of the pdfs of y1 for the paraboloid test case 
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10.2.3 PWR Natural Circulation Loop Test 

We performed the same analysis shown in Section 10.1.2 but using the RELAP-7 PWR natural 
circulation loop and the KNR surrogate model as shown below (initial training grid was ): 

<ROM name="ROM_KNR" subType="SciKitLearn"> 
   <SKLtype>neighbors|KNeighborsRegressor</SKLtype> 
   <Features>Materials|fuel-mat|k,Components|reactor|power</Features> 
   <Target>PeakFuelTemperature</Target> 
   <n_neighbors>3</n_neighbors> 
   <algorithm>kd_tree</algorithm> 
</ROM> 

RAVEN Input block 16 – KNR definition for the Rosenbrock function test 

Results are shown in Figure 71, Figure 72 and Figure 73 while they are summarized in Table 10. The 
same considerations explained in Section 10.1.3 are valid here. 

 

Figure 71 – KNR: Comparison of the response function for the PWR natural circulation test case 

 

Figure 72 – KNR: max relative error for the PWR natural circulation loop test case
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Table 10 - KNR: Comparison of the statistical moments, Pearson and sensitivity coefficients for y1 
for the PWR natural circulation test case 

  RELAP-7 ROM Relative Error 
mu 5.84550604 E+02 5.84557948 E+02 -1.25635E-05 
sigma 3.46907782 E-01 3.51373560 E-01 -0.012873098 
skewness 3.44692439 E-01 3.45760677 E-01 -0.003099105 
K sensitivity -6.66368173 E-01 -6.64299955 E-01 0.003103717 
P sensitivity 7.23160579 E-03 7.22390622 E-03 0.001064711 
K pearson -9.05607661 E-01 -8.91323155 E-01 0.015773394 
P pearson -3.97276934 E-04 -3.97276934 E-04 0 

 

 

Figure 73 – KNR: Comparison of the pdfs of peak fuel temperature for the PWR natural 
circulation test case 

 

10.2.4 Convergence Study on KNR 

Regarding the convergence study of KNR we performed a series of test to perform the 
performances of KNR algorithms by changing the initial training grid and the value of the parameter K.  

Table 11 – KNR: Max relative error as function of K and grid size for the Rosenbrock test case 

Grid 
3 5 7 9 11 

K

3 1.42067684 0.83274725 0.29376348 0.32445469 0.18495505 
4 1.91869853 1.19110615 0.53416133 0.51789447 0.25364263 
5 1.63524659 0.92473063 0.58646759 0.42982842 0.31561579 
6 2.00251335 1.30171444 0.83733852 0.55191956 0.34646707 
8 2.44297832 1.12511214 0.72334650 0.48676474 0.44874565 

11 2.15429607 1.09436904 0.73316160 0.56736624 0.42097214 
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We expect the max relative error in the reconstruction of the response surface decreases when the initial 
grid size increases. In addition, we also expect that by increasing the value of K such error is increasing 
since more neighbors are considered in each prediction. Obtained results confirm our prediction and they 
are shown in Figure 74 and Figure 75 and they are summarized in Table 11. 

 

Figure 74 – KNR: plot of the max relative error as function of K and grid size for the Rosenbrock 
test case 
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Figure 75 – KNR: Response function plots as function of K 
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10.3 Support Vector Regressor (SVR) 

10.3.1 Rosenbrock Test 

Starting from a grid  we perform the first regression test on a Rosenbrock test with a value of 
Gamma and C as shown below: 

<ROM name="ROM_SVR" subType="SciKitLearn"> 
   <SKLtype>svm|SVR</SKLtype> 
   <Features>x1,x2</Features> 
   <Target>y1</Target> 
   <kernel>rbf</kernel> 
   <C>100000</C> 
   <gamma>0.1</gamma> 
</ROM> 

RAVEN Input block 17 – SVR definition for the Rosenbrock function test 

Even though the reconstruction of the response surface looks accurate as shown in Figure 76, the 
maximum relative error was 0.083497 (see Figure 77). 

 

Figure 76 – SVR: Comparison of the response function for the Rosenbrock test case 

 

Figure 77 – SVR: Comparison of the response function for the Rosenbrock test case 
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10.3.2 Paraboloid test 

We performed the second test on the Paraboloid test case in order to evaluate how the regression 
error propagates in the UQ/SA phase. Results are shown in and summarized in Figure 78 and Figure 79 
and they are summarized in Table 12. 

 

Figure 78 – SVR: Comparison of the response function for the paraboloid test case 

 

 

 

Table 12 – SVR: Comparison of the statistical moments, Pearson and sensitivity coefficients for y1 
for the paraboloid test case 

  Reference ROM Relative Error 
mu 5.18212435 5.14685656 0.006805663 
sigma 1.38749472 1.42465494 -0.026782242 
skewness 0.339384699 0.360452670 -0.062076962 
x1 sensitivity 5.99808493 6.17922605 -0.030199826 
x2 sensitivity 4.00024747 4.05308554 -0.0132087 
x1 Pearson 0.825704716 0828433888 -0.003305264 
x2 Pearson 0.552788789 0545509840 0.013167686 
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Figure 79 – SVR: Comparison of the pdfs of y1 for the paraboloid test case 

 

10.3.3 PWR Natural Circulation Loop Test 

We performed the same analysis shown in Section 10.1.3 but using the RELAP-7 PWR natural 
circulation loop and the SVR surrogate model as shown below (initial training grid was ): 

<ROM name="ROM_SVR" subType="SciKitLearn"> 
   <SKLtype>svm|SVR</SKLtype> 
   <Features>Materials|fuel-mat|k,Components|reactor|power</Features> 
   <Target>PeakFuelTemperature</Target> 
   <kernel>rbf</kernel> 
   <C>1000000</C> 
   <gamma>0.1</gamma> 
</ROM> 

RAVEN Input block 18  – SVR definition for the PWR Natural Circulation Loop test 

The maximum relative error was max 0.0036869 as shown in Figure 80, Figure 81 and Figure 82 
while they are summarized in Table 13. 
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Figure 80 – SVR: Comparison of the response function for the PWR natural circulation loop test 
case 

 

Figure 81 – SVR: max relative error for the natural curculation loop test case 

Table 13 – SVR: Comparison of the statistical moments, Pearson and sensitivity coefficients for y1 
for the PWR natural cicrulation loop test case 

  RELAP-7 ROM Relative Error 
mu 5.84550604 E+02 5.84555067 E+02 -7.63492E-06 
sigma 3.46907782 E-01 3.89928838 E-01 -0.124012946 
skewness 3.44692439 E-01 2.38731506 E-01 0.307407187 
K sensitivity -6.66368173 E-01 -7.48461405 E-01 -0.123195007 
P sensitivity 7.23160579 E-03 8.23918588 E-03 -0.139330063 
K Pearson -9.05607661 E-01 -9.04950999 E-01 0.000725106 
P Pearson -3.97276934 E-04 -3.97276934 E-04 0 
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Figure 82 – SVR: Comparison of the pdfs of peak fuel temperature for the PWR natural circulation 
loop test case 

 

10.3.4 Convergence study on SVR 

As performed for the SVM classifier in Section 9.1.4 we have performed a series of convergence 
studies by changing the input parameters Gamma and C and by changing the initial training grid size. 
Results are shown in Figure 83 and they are summarized in Table 14.  

 

Table 14 – SVR: Max relative error for the Rosenbrock test case as function of Gamma and C 
(initial training grid is 6x6) 

  Gamma
 0.01 0.1 1.0 10 

C

1E4 0.911 0.0836 0.2707 0.5973 
1E5 0.8826 0.0835 0.2707 0.5973 
1E6 0.8627 0.0835 0.2707 0.5973 
1E7 0.81345 0.0835 0.2707 0.5973 
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Figure 83 – SVR: plots of the response function and relative error as function of gamma (C=1.0E5 
and 5x5 grid) 
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We also evaluate the convergence of the algorithm when the initial grid size is changed. The 
rational is that by increasing the training sample size, the max relative error decreases. Results are 
summarized in Table 15 and they are plotted in Figure 84 by using the SVR surrogate model as indicated 
below: 

<ROM name="ROM_SVR" subType="SciKitLearn"> 
   <SKLtype>svm|SVR</SKLtype> 
   <Features>x1,x2</Features> 
   <Target>y1</Target> 
   <kernel>rbf</kernel> 
   <C>100000</C> 
   <gamma>0.1</gamma> 
</ROM> 

RAVEN Input block 19 – SVR definition for the convergence study 

Table 15 – SVR: max relative error as function of the grid size for the Rosenbrock test case 

Grid size Relative error (%) 
3 0.779250440154 
5 0.0834973073469 
7 0.0566070865042 
9 0.0539084403364 
11 0.0507307124977 
14 0.0493425293902 

 

 

Figure 84 – SVR: Plot of the max relative error as function of the grid size  
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10.4 Sheppard Interpolation Method 

In this section we tested the Sheppard interpolation method, also known as inverse distance 
weighting interpolation. This is the only method available in CROW that we tested.  

10.4.1 Rosenbrock Test 

Starting from a grid  we perform the first regression test on a Rosenbrock test with a value of 
p equal to 3 as shown below: 

<ROM name="ROM_IW" subType="NDinvDistWeight"> 
   <Features>x1,x2</Features> 
   <Target>y1</Target> 
   <p>3</p> 
</ROM> 

RAVEN Input block 20  – Sheppard Method definition for the Rosenbrock Test 

Results are shown in Figure 85 and Figure 86. Analogously to the KNR regressor, the interpolation is 
done by considering not K but all training points weighted by the inverse of the distance. Even though 
these methods are flexible to model very discontinuous response surfaces, they are affected by heavy 
interpolation error. 

 

Figure 85 – Sheppard method: Comparison of the response function for the Rosenbrock test case 
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Figure 86 – Sheppard method: max relative error for the Rosenbrock test case 

10.4.2 Paraboloid test 

Starting from a grid  we perform the first regression test on the Paraboloid test again with a value of 
p equal to 3. Results are shown in Figure 87 and Figure 88 and they are summarized in Table 16. 

 

Figure 87 – Sheppard method: Comparison of the response function for the paraboloid test case 

Table 16 – Sheppard method: Comparison of the statistical moments, Pearson and sensitivity 
coefficients for y1 for the paraboloid test case  

  Reference ROM Relative Error 
mu 5.18212435 5.23847510 -0.010874064 
sigma 1.38749472 1.34709937 0.029113877 
skewness 0.339384699 0.327595986 0.034735547 
x1 sensitivity 5.99808493 5.78141655 0.036122926 
x2 sensitivity 4.00024747 3.85665964 0.035894737 
x1 Pearson 0.825704716 0.819744038 0.007218898 
x2 Pearson 0.552788789 0.548927597 0.006984932 
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Figure 88 – Sheppard method: Comparison of the pdfs of y1 for the paraboloid test case 

 

10.4.3 PWR Natural Circulation Loop Test 

Starting from a grid 6x6 we perform the first regression test on the Paraboloid test again with a 
value of p equal to 3. Results are summarized in Table 17 and plotted in Figure 89, Figure 90 and Figure 
91. The max relative error was in this case equal to 0.0037801. Again note how the evident errors in the 
reconstruction of the response surface. 

 

Figure 89 – Sheppard method: Comparison of the response function for the PWR natural 
circulation loop  test case 
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Figure 90 – Sheppard method: max relative error for the PWR natural circulation loop  

Table 17 – Sheppard method: Comparison of the statistical moments, Pearson and sensitivity 
coefficients for y1 for the PWR natuaral circulation loop test case 

  RELAP-7 ROM Relative Error 
mu 5.84550604 E+02 5.84559269 E+02 -1.48234 E-05 
sigma 3.46907782 E-01 3.37515077 E-01 0.02707551 
skewness 3.44692439 E-01 3.44898676 E-01 -0.000598322 
K sensitivity -6.66368173 E-01 -6.43454798 E-01 0.034385458 
P sensitivity 7.23160579 E-03 6.98035452 E-03 0.034743496 
K pearson -9.05607661 E-01 -8.98803428 E-01 0.007513445 
P pearson -3.97276934 E-04 -3.97276934 E-04 0 

 

 

Figure 91 – Sheppard method: Comparison of the pdfs of peak fuel temperature for the PWR 
natural circulation loop test case 
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10.4.4 Convergence study on Sheppard interpolation method 

As performed for the SVM classifier in Section 10.1.4 we have performed a series of convergence 
studies by changing the input parameter p and by changing the initial training grid size. We used the 
Rosenbrock function as test model. Obtained results are summarized in Table 18. Again note how the 
max relative error is fairly even if the grid size is increased. 

Table 18 – Sheppard Method: max relative error as function of the grid size and p 

  p
 1 2 3 4 

Grid
size 

3 1.0487 1.0614 1.0694 1.0732 
5 0.4419 0.45456 0.45819 0.45917 
7 0.34776 0.34160 0.3366 0.33380 
9 0.2329 0.2246 0.2242 0.2256 
11 0.16079 0.13850 0.1377 0.1377 
14 0.14035 0.13059 0.13076 0.132118 

 

 

10.5 Generalized Polynomial Chaos expansion (gPC) 

The last regressor to be tested has been internally developed by the RAVEN team: gPC. The main 
difference of this type of surrogate models is that its creation coupled with a specific sampler available in 
RAVEN: Sparse Grid Collocation sampler. This is due to the fact that the number and the location of the 
training samples for the surrogate model that are generated by the sampler depend on choice iof the 
internal parameters of the surrogate model. The definition of this sampler and its surrogate mdoel is 
shown below: 

<Samplers> 
   <SparseGridCollocation name="SG" parallel="0"> 
   <variable name="x1"> 
      <distribution>normal</distribution> 
   </variable> 
   <variable name="x2"> 
      <distribution>normal</distribution> 
   </variable> 
   <ROM class="Models" type="ROM">GP_rom</ROM> 
   </SparseGridCollocation> 
</Samplers> 
<Models> 
   <ROM name="GP_rom" subType="GaussPolynomialRom"> 
      <Features>x1,x2</Features> 
      <Target>y1</Target> 
      <IndexSet>TotalDegree</IndexSet> 
      <PolynomialOrder>4</PolynomialOrder> 
      <Interpolation quad="Hermite" poly="Hermite" weight="1">x1</Interpolation> 
      <Interpolation quad="Hermite" poly="Hermite" weight="1">x2</Interpolation> 
   </ROM> 
</Models>

RAVEN Input block 21: gPC definition for the Rosenbrock Test 
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10.5.1 Rosenbrock Test 

The first testing of this surrogate model was the Rosenbrock function. Results are shown in Figure 
92 and Figure 93. We employed a fourth order polynomial and the max relative error was extremely low: 
4 order 1.33545 E-10. 

 

Figure 92 – gPC: Comparison of the response function for the Rosenbrock test case 

 

Figure 93 – gPC: max relative error for the Rosenbrock test case 

10.5.2 Paraboloid test 

We then tested the gPC surrogate model for the analytical UQ/SA test. Results are shown in Figure 94 
and Figure 95 and they are shown in  
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Table 19. Remember that, if a comparison with the other surrogate models of this section is made, 
the training set for the gPC surrogate models is not a  grid; the actual number of samples and their 
location actually depends on the polynomial order. For this case we chose a 4th order polynomial which 
required 53 training points. Even though more training points were used (53 instead of 36) the obtained 
results were much better. 

 

Figure 94 – gPC: Comparison of the response function for the paraboloid test case 
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Table 19 – gPC: Comparison of the statistical moments, Pearson and sensitivity coefficients for y1 
for the paraboloid test case 

  Reference ROM Relative Error 
mu 5.18212435 5.18112884 0.000192105 
sigma 1.38749472 1.38757635 -5.88327 E-05 
skewness 0.339384699 0.341472156 -0.00615071 
x1 sensitivity 5.99808493 5.99837735 -4.87522 E-05 
x2 sensitivity 4.00024747 3.99844840 0.00044974 
x1 Pearson 0.825704716 0.825956678 -0.000305148 
x2 Pearson 0.552788789 0.551648536 0.002062728 

 

 

Figure 95 – gPC: Comparison of the pdfs of y1 for the paraboloid test case 

 

10.5.3 PWR Natural Circulation Loop Test 

We then repeated the UQ/SA analysis suing the RELAP-7 PWR natural circulation loop. Results 
are summarized in Table 20 and they are shown in Figure 96 and Figure 97. Again remember that, if a 
comparison with the other surrogate models of this section is made, the training set for the gPC surrogate 
models is not a  grid; the actual number of points and their location actually depends on the 
polynomial order. For this case we chose a 4th order polynomial which required 53 training points (instead 
of 36). 
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Figure 96 – gPC: Comparison of the response function for the PWR natural circulation loop test 
case 

 

Figure 97 – gPC: max relative error for the PWR natural circulation loop test case 

Table 20 – GPM: Comparison of the statistical moments, Pearson and sensitivity coefficients for y1 
for the PWR natural circulation loop test case 

  RELAP-7 ROM Relative Error 
mu 5.84550604 E+02 5.84550676 E+02 -1.23172 E-07 
sigma 3.46907782 E-01 3.46943545 E-01 -0.000103091 
skewness 3.44692439 E-01 3.44610341 E-01 0.000238178 
K sensitivity -6.66368173 E-01 -6.66135712 E-01 0.000348848 
P sensitivity 7.23160579 E-03 7.23124314 E-03 5.01479E-05 
K pearson -9.05607661 E-01 -9.05683162 E-01 -8.33705E-05 
P pearson -3.97276934 E-04 -3.97276934 E-04 0 
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Figure 98 – gPC: Comparison of the pdfs of peak fuel temperature for the PWR natural circulation 
loop test case 

 

10.5.4 Convergence study on GPC 

For the scope of this report we focused on the evaluation the performances of the gPC surrogate 
models by increasing the polynomial order. Results are shown in Figure 99 and Figure 100 and they are 
summarized in Table 21. Note the discontinuous behavior of such error when the polynomial order moves 
form 3 to 4. It appears that the minimum polynomial order to capture the shape of the response function is 
4. 

Figure 102 shows the location of the samples generated by the associated sampler as function of 
the polynomial order. Recall that the training of the gPC surrogate model is tightly coupled to the 
generation of the training data; i.e., the training data was not identical to the one used by the other 
surrogate models presented in this section (i.e., a  grid.)  

 

Table 21 – gPC: max relative error for the Rosenbrock test case as function of the polynomial order 

Pol. Order Max Relative error 
2 1.79859462747 
3 3.34216332644 
4 1.33544718371 E-10 
5 1.16275323726 E-10 
6 3.94086123497 E-08 
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Figure 99 – gPC: plot of the max relative error for the Rosenbrock test case as function of the 
polynomial order 
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Figure 100 – gPC: plot of the response surface and the max relative error for the Rosenbrock test 
case as function of the polynomial order 
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Figure 101 – gPC: plot of the response surface and the max relative error for the Rosenbrock test 
case as function of the polynomial order 
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polynomial order = 2 polynomial order = 3 

polynomial order = 4 polynomial order = 5 

 polynomial order = 6 

Figure 102 – gPC: plot of the sample locations for the Rosenbrock test case as function of the 
polynomial order 
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11. SUMMARY AND CONCLUSIONS 

In this report we have given an overview of the Reduced Order Modeling capabilities available in 
the RISMC toolkit and, in particular, in the RAVEN statistical framework. We have shown how Reduced 
Order Modeling can be applied in a typical RISMC analysis: from the generation to the analysis and to 
visualization of data. We have shown how surrogate models can be used as a substitute for actual code to 
speed up the statistical analysis required by the RISMC approach. We have indicated how it is possible to 
reduce the computational cost of such statistical analyses by smartly sampling the input space. 

The most important application of reduced order modeling techniques focuses on propagation of 
uncertainties and sensitivity analysis types of applications. In this respect we employed a few thermo-
hydraulic models of RELAP-7 and we showed how this process can be performed by using the RAVEN 
code.  Also, we have shown how reduced order modeling techniques can be also employed for data 
mining types of applications to visualize high dimensional data and extract useful information from large 
amounts of data.  

We have, in particular, focused on surrogate models, both classifiers and regressors. We have 
tested their performances on a set of analyses that are of interest in the RISMC approach. We used not 
only analytical tests but also tests that involved RELAP-7 systems analysis. The comparison allowed us 
to identify the pros and cons of each algorithm and identify the best surrogate model depending on the 
case under consideration. 

This overview was not however exhaustive since additional surrogate models are available in 
RAVEN. The set of algorithms we chose is a representative set of methods that most likely will be used 
within the RISMC project. 
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