
 

The INL is a U.S. Department of Energy National 
Laboratory operated by Battelle Energy Alliance 

INL/EXT-15-36632 
Revision 0  

Developing and 
Implementing the Data 
Mining Algorithms in 
RAVEN  
 

Sonat Sen,  
Daniel Maljovec,  
Andrea Alfonsi,  
Cristian Rabiti 
 
September 2015 

 



 

 

 

 

 

DISCLAIMER 
This information was prepared as an account of work sponsored by an 

agency of the U.S. Government. Neither the U.S. Government nor any 
agency thereof, nor any of their employees, makes any warranty, expressed 
or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness, of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately 
owned rights. References herein to any specific commercial product, 
process, or service by trade name, trade mark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the U.S. Government or any agency thereof. The views and 
opinions of authors expressed herein do not necessarily state or reflect 
those of the U.S. Government or any agency thereof. 



 

 

INL/EXT-15-36632 
Revision 0  

Developing and Implementing the Data Mining 
Algorithms in RAVEN  

Sonat Sen,  
Daniel Maljovec,  
Andrea Alfonsi,  
Cristian Rabiti 

September 2015 

Idaho National Laboratory 
Idaho Falls, Idaho 83415  

 
 

http://www.inl.gov 

Prepared for the 
U.S. Department of Energy 
Office of Nuclear Energy 

Under DOE Idaho Operations Office 
Contract DE-AC07-05ID14517 

 



 

 

  



 

 

 

 

Developing and Implementing the Data Mining 
Algorithms in RAVEN  

INL/EXT-15-36632 
Revision 0 

September 2015 

Approved by:  
   

Name 

Title [optional] 

 Date 

   

Name 

Title [optional] 

 Date 

   

Name 

Title [optional] 

 Date 

   

Name 

Title [optional] 

 Date 



 

 

 
  



 

 v 

 

SUMMARY 

The RAVEN code is becoming a comprehensive tool to perform probabilistic risk assessment, 
uncertainty quantification, and verification and validation. The RAVEN code is being developed to 
support many programs and to provide a set of methodologies and algorithms for the analysis of data sets, 
simulation of physical phenomenon, etc. 

Scientific computer codes can generate enormous amounts of data. To post-process and analyze such 
data might, in some cases, take longer than the initial software runtime. Data mining algorithms/methods 
help in recognizing and understanding patterns in the data, and thus discover knowledge in databases. 

The methodologies used in dynamic probabilistic risk assessment or in uncertainty and error 
quantification analysis couple system/physics codes with simulation controller codes, such as RAVEN. 
RAVEN introduces both deterministic and stochastic elements into the simulation while the 
system/physics code model the dynamics deterministically. A typical analysis is performed by sampling 
values of a set of parameter attributes. A major challenge in using dynamic probabilistic risk assessment 
or uncertainty and error quantification analysis for a complex system is to analyze the large number of 
scenarios generated. Data mining techniques are typically used to better organize and understand data, i.e. 
recognizing patterns in the data.  

This report focuses on development and implementation of a post processing infrastructure and 
Application Programming Interfaces (APIs) for different data mining algorithms within RAVEN to 
extend its capability. The application of these algorithms to different databases will be also presented.  

 



 

 vi 



 

 vii 

CONTENTS 

SUMMARY .................................................................................................................................................. v	  

ACRONYMS .............................................................................................................................................. xii	  

1.	   INTRODUCTION ................................................................................................................................. 1	  

2.	   RAVEN FRAMEWORK ....................................................................................................................... 2	  
2.1	   Introduction ............................................................................................................................... 2	  
2.2	   Software Infrastructure Overview ............................................................................................. 2	  

2.2.1	   Distributions ................................................................................................................. 3	  
2.2.2	   Samplers ....................................................................................................................... 4	  
2.2.3	   Models .......................................................................................................................... 6	  
2.2.4	   Simulation Environment .............................................................................................. 7	  

3.	   DATA MINING ALGORITHMS ......................................................................................................... 9	  
3.1	   SciKit-Learn Algorithms ........................................................................................................... 9	  

3.1.1	   Gaussian Mixture Models   .......................................................................................... 9	  
3.1.2	   Cluster Analysis   ....................................................................................................... 11	  
3.1.3	   Dimensionality Reduction Techniques ...................................................................... 17	  
3.1.4	   Manifold Learning Algorithms .................................................................................. 19	  

3.2	   Topology Post Processor ......................................................................................................... 21	  
3.2.1	   Implementation Details .............................................................................................. 21	  
3.2.2	   Morse-Smale Regression ROM ................................................................................. 26	  

4.	   TEST CASES AND RESULTS .......................................................................................................... 28	  
4.1	   Test Cases ................................................................................................................................ 28	  

4.1.1	   BISON Nuclear Fuel Performance Simulation .......................................................... 28	  
4.1.2	   Station Black-Out Case .............................................................................................. 30	  

4.2	   Applications of Data Mining Post-Processor .......................................................................... 33	  
4.2.1	   BISON Fuel Simulation ............................................................................................. 33	  
4.2.2	   BWR SBO Case ......................................................................................................... 36	  

4.3	   Application of Topology Post-Processor ................................................................................ 40	  

5.	   FUTURE DEVELOPMENTS ............................................................................................................. 41	  

6.	   CONCLUSIONS ................................................................................................................................. 42	  

7.	   REFERENCES .................................................................................................................................... 43	  

Appendix A: Sample Inputs ........................................................................................................................ 45	  

Appendix B: User Manual ........................................................................................................................... 52	  
7.1	   TopologicalDecomposition ..................................................................................................... 52	  
7.2	   Data Mining Post Processor .................................................................................................... 53	  

7.2.1	   Gaussian mixture models ........................................................................................... 54	  
7.2.2	   Dirichlet Process GMM Classifier (DPGMM) .......................................................... 54	  
7.2.3	   Variational GMM Classifier (VBGMM) ................................................................... 55	  



 

 viii 

7.2.4	   KMeans Clustering .................................................................................................... 56	  
7.2.5	   Mini Batch K-Means Clustering ................................................................................ 57	  
7.2.6	   Affinity Propagation .................................................................................................. 58	  
7.2.7	   Mean Shift .................................................................................................................. 58	  
7.2.8	   Spectral clustering ...................................................................................................... 59	  
7.2.9	   DBSCAN Clustering .................................................................................................. 60	  
7.2.10	   Exact PCA ................................................................................................................. 61	  
7.2.11	   Randomized (Approximate) PCA ............................................................................. 61	  
7.2.12	   Kernel PCA ............................................................................................................... 62	  
7.2.13	   Sparse PCA ............................................................................................................... 63	  
7.2.14	   Mini Batch Sparse PCA ............................................................................................ 64	  
7.2.15	   Truncated SVD .......................................................................................................... 65	  
7.2.16	   FastICA ..................................................................................................................... 66	  
7.2.17	   Isometric Manifold Learning .................................................................................... 66	  
7.2.18	   Locally Linear Embedding ........................................................................................ 67	  
7.2.19	   Spectral Embedding .................................................................................................. 68	  
7.2.20	   MDS .......................................................................................................................... 69	  

 

 
FIGURES 

Figure 1: Example of two-dimensional multivariate probability distribution function ................................ 4	  

Figure 2: RAVEN schematic module interaction ......................................................................................... 8	  

Figure 3: Gaussian Mixture Model classifier applied to an arbitrary dataset generated with the 
Scikit-learn Blobs module. .......................................................................................................... 10	  

Figure 4: Clustering algorithms applied to sample datasets (left-to-right: K-Means, Mini Batch K-
Means, Mean Shift, Spectral Clustering and DBSCAN). ........................................................... 12	  

Figure 5: PCA implementation ................................................................................................................... 18	  

Figure 6: An example function decomposed into: (a) descending manifolds, (b) ascending 
manifolds, and (c) the Morse-Smale complex. Red dots represent local maxima, blue 
represent local minima, and green points represent saddle points. ............................................. 22	  

Figure 7: Examples of the empty region specified by various β-skeletons. From left to right, β < 
1, β = 1, and β > 1. ...................................................................................................................... 23	  

Figure 8: An example 2D function illustrating the effect after canceling the local maximum x and 
the circled green saddle point. .................................................................................................... 23	  

Figure 9: An example 2D function simplified using (from left): a point count metric where larger 
segments subsume smaller segments, the default persistence simplification metric 
based on function value difference, a probability metric (where each dimension consists 
of a normal distribution with a mean at xi=0.5), and finally the full segmentation with 
no simplification performed. ....................................................................................................... 24	  



 

 ix 

Figure 10: Optional user interface for interactively adjusting parameters and visualizing the 
effects on the sensitivity and fitness of the data. ........................................................................ 25	  

Figure 11: Persistence-based topological views of the data allow the user to select an appropriate 
simplification level in the topological hierarchy. ....................................................................... 25	  

Figure 12: A scatterplot showing a set of partitions in the data (left), the associated sensitivity 
coefficients of each segment in the data (center), and the R2 fitness plot demonstrating 
the quality of fit when performing stepwise regression. ............................................................. 26	  

Figure 13: Kernels available for use in the KDE method. Left column (from top to bottom): 
uniform, Epanechnikov, triweight, Gaussian, logistic, and exponential. Right column 
(from top to bottom): triangular, biweight, tricube, cosine, and Silverman. .............................. 27	  

Figure 14: Prediction results using various versions of the Morse-Smale regression ROM. 
Clockwise from top left: The initial training data (colored by decomposed 
segmentation), the hard cutoff SVM, the hard cutoff KDE using a Gaussian kernel, the 
smooth KDE with a Gaussian kernel, the smooth SVM, and the true response being 
modeled (colored by the true topological decomposition). ........................................................ 28	  

Figure 15: The BISON mesh used in the simulation: smeared pellet stack with hafnium insulator 
end pellets. .................................................................................................................................. 29	  

Figure 16: Schematic of the model used in the SBO Case [17] .................................................................. 31	  

Figure 17: Input space with cluster labels obtained with k-means algorithm applied to output ................. 33	  

When the clustering is applied to the whole output space the clusters show some noise as seen in 
Figure 17 and Figure 18, especially it is better visualized in the middle and bottom 
plots of  ....................................................................................................................................... 34	  

Figure 18: Midplane Von Mises Stress vs. Power Scale Factor and Grain Radius Factor: 
Clustering (k-means) applied to full output space ...................................................................... 34	  

Figure 19: Coloring is based on a clustering (k-means) applied to the full output space: Midplane 
Von Mises Stress vs. Power Scale Factor (top), Grain Radius Factor (middle) and 
Thermal Expansion Factor (bottom). .......................................................................................... 35	  

Figure 20: Clustering (k-means) applied to output space and the dimensionality reduction (PCA) 
applied to the 3-plotted parameters in Figure 18 plotted with the cluster labels ........................ 35	  

Figure 21: The first 3 components of the reduced output space ................................................................. 36	  

Figure 22: The input space with the cluster labels obtained from the reduced output space ...................... 36	  

Figure 23: Maximum Clad Temperature as a function of Reactor Power .................................................. 37	  

Figure 24:Maximum Clad temperature as a function of DG recovery time ............................................... 37	  



 

 x 

Figure 25: Maximum Clad Temperature as a function of SRV2 Fail Open time. ...................................... 38	  

Figure 26: The most important 3 input parameters with the cluster labels from output space. .................. 39	  

Figure 27: Results of SGD Classifier ROM. ............................................................................................... 39	  

Figure 28: The separate dependence of the output variable to the most important 3 input 
parameters. .................................................................................................................................. 40	  

Figure 29: BISON test case results. Left: the topology map, middle left: the sensitivity values of 
each dimension on each partition of the data, middle right: the fitness values of 
performing stepwise regression where dimensions are added in order of decreasing 
sensitivity, and right: a 3D scatter plot where thermal_expansion is suppressed. ...................... 41	  

Figure 30: BISON test case results at a more resolved topological decomposition. Left: the 
topology map, middle left: the sensitivity values of each dimension on the most 
significant partitions of the data, middle right: the fitness values of performing stepwise 
regression where dimensions are added in order of decreasing sensitivity for the same 
partitions, and right: a 3D scatter plot where grainradius_scalef is suppressed. ........................ 41	  

 
TABLES 

Table 1: Overview of Clustering Algorithms [7] ........................................................................................ 12	  

Table 2: Parameters calculated in the Bison fuel analysis (output space) .................................................. 30	  

Table 3: Summary of the stochastic parameters and their associated distributions .................................... 32	  

 



 

 xi 



 

 xii 

ACRONYMS 
 

ADS – Automatic Depressurization System 

AMSC – Approximate Morse-Smale Complex 

API – Application Programming Interface 

BIC – Bayesian Information Criterion 

BWR – Boiling Water Reactor 

CDF – Cumulative Distribution Function 

CPU – Central Processing Unit 

CST – Condensate Storage Tank 

DBSCAN – Density-Based Spatial Clustering of Applications with Noise 

DET – Dynamic Event Tree 

DG – Diesel Generator 

DPGMM – Dirichlet Process Gaussian Mixture Model 

DPRA – Dynamic Probabilistic Risk Assessment 

EM – Expectation-Maximization 

FOM – Figure of Merit 

GMM – Gaussian Mixture Model 

HCTL – Heat Capacity Temperature Limit 

HPCI – High Pressure Coolant Injection 

ICA – Independent Component Analysis 

KDD – Knowledge Discovery in Databases 

KDE – Kernel Density Estimation 

LHS – Latin Hypercube Sampling 

LLE – Locally Linear Embedding 

LOOP – Loss Of Offsite Power 

LS – Limit Surface 

LSA – Latent Semantic Analysis 

MC – Monte Carlo 

MDS – Multi-Dimensional Scaling 

MOOSE – Multi-physics Object-Oriented Simulation Environment 

NPP – Nuclear Power Plant 

PCA – Principal Component Analysis 

PDF – Probability Density Function 



 

 xiii 

PHISICS – Parallel and Highly Innovative Simulation for INL Code System 

PP – Post-Processor 

PRA – Probabilistic Risk Assessment 

PSP – Pressurized Suppression Pool 

RAVEN – Reactor Analysis and Virtual Control Environment 

RCIC – Reactor Core Isolation Cooling 

RELAP – Reactor Excursion and Leak Analysis Program 

RHR – Residual Heat Removal 

ROM – Reduced Order Model 

RPV – Reactor Pressure Vessel 

SBO – Station Black Out 

SGD – Stochastic Gradient Descent 

SRV – Safety Relief Valve 

SVD – Singular Value Decomposition 

SVM – Support Vector Machine 

VBGMM – Variational Bayesian Gaussian Mixture Model 

 

  



 

 1 

Developing and Implementing the Data Mining 
Algorithms in RAVEN  

1. INTRODUCTION 

RAVEN [1 - 6] is advancing its capability to perform statistical analyses of stochastic dynamic 
systems, putting a big effort in the identification and development of methodologies able to identify the 
region of interest in the uncertain/parametric space allowing for subsequent optimization of the available 
computational resources.  

 The simulation codes used in nuclear engineering analysis implement computationally intensive 
methods to perform safety analysis of nuclear power plants. The new generation of nuclear engineering 
codes couple several different physics; they include nuclear phenomena, thermal-hydraulic phenomena, 
structural behaviors and system dynamics, etc. The Dynamic Probabilistic Risk Assessment (DPRA) 
methodologies couple these multi-physics codes with stochastic analysis tools, such as RAVEN, to 
perform probabilistic risk analysis, uncertainty quantification, and sensitivity analysis. This type of 
analysis is typically performed by sampling values for a set of parameters from the space of interest with 
uncertainty. The system behavior is then simulated for that specific set of parameter values. 

Investigation of the probabilistic evolution of accident scenarios for a complex system such as a 
nuclear power plant (NPP) is not a trivial challenge. The complexity of the system to be modeled leads to 
demanding computational requirements to simulate even just one of the many possible evolutions of an 
accident scenario (tens of CPU hours). At the same time, the probabilistic analysis requires thousands of 
runs (simulation of one of the possible scenario evolutions) to investigate outcomes characterized by low 
probability and severe consequence. The final product, the data generated, can be too complex and large 
that even more time is required for analyzing and understanding the outcome as a whole. Therefore, most 
of the time the input space of such analysis usually does not consider all of the input parameters and the 
output space usually is limited to a few figures of merit (FOMs). 

Large and complex datasets can be analyzed with data mining techniques. Data mining techniques are 
used to find and interpret patterns in these large datasets. Generally, the data mining process includes the 
extraction of information from a dataset and the subsequent transformation of it into an understandable 
structure for further use. The ultimate task is the automatic or semi-automatic analysis of large quantities 
of data to extract previously unknown information.  

A few of the many algorithms being incorporated in data mining include: 

• Clustering: maps a data item into one of several categorical classes (or clusters) in which the 
classes must be determined from the data. Clusters are defined by finding natural groupings 
of data items based on similarity metrics or probability density models. If the clusters are 
predefined then the process is called “classification.” 

• Regression: a learning function, which maps a data item to a real-valued prediction variable 

This report is structured as follows:  

• Section 1 gives a brief introduction/overview of the data mining approach ��� 
• Section 2 gives an overview of the RAVEN code with its main components, especially data 

mining Post Processors (PP) ��� 



 

 2 

• Section 3 introduces the algorithms in the SciKit learn library and the Topology PP ��� 
• Section 4 presents a series of test cases to show the possibilities of using the data mining 

algorithms  ��� 
• Section 5 highlights the possible future development paths ��� 
• Section 6 presents conclusions. ��� 

2. RAVEN FRAMEWORK 
2.1 Introduction  

As inferred from the initial introduction, the data mining algorithms from Scikit Learn [7], which is 
an open source machine-learning library developed in Python, and the topological post processor, were 
implemented and assessed within the probabilistic and uncertainty quantification framework, RAVEN. 
Hence, it is helpful to provide a brief overview of the code and its main capabilities and internal structure.  

RAVEN was developed in a highly modular and pluggable way to enable easy integration of different 
programming languages (i.e., C++ and Python) and coupling with any system/physics code. Its main goal 
is to provide a tool to allow exploration of the uncertain domain, dispatching several different capabilities 
in an integrated environment.  

2.2 Software Infrastructure Overview  

The main idea behind the design of the RAVEN software package is the creation of a multi-purpose 
framework characterized by high flexibility with respect to the possible set of analyses that a user might 
request. To obtain this result, the code infrastructure must be capable of constructing the 
analysis/calculation flow at run-time, interpreting the user-defined instructions, and assembling the 
different analysis tasks following a user-specified scheme.  

The need to achieve such flexibility, combined with reasonably fast development, pushed toward the 
programming language that is naturally suitable for this kind of approach: Python.  

Hence, RAVEN is coded in Python and characterized by a highly object-oriented design. The core of 
the analysis available through RAVEN is represented by a set of basic components (entities) the user can 
combine, to create a custom analysis flow. A list of these components and summary of their most 
important functionalities are as follows:  

Distribution: The probability of a specific system outcome is related to the probability of the set of 
input parameters and initial conditions that led to such an outcome. Moreover, some sampling techniques 
(e.g., Monte-Carlo [MC]) explore the input space according to the probabilistic distribution associated to 
the input variables. Consequently, RAVEN possesses a large library of PDFs. ��� 

Sampler: A proper approach to sample the input space is fundamental for optimizing the 
computational time. In RAVEN, a “sampler” determines a unique exploration strategy that is applied to 
the input space of a system. The association of uncertain variables and their corresponding probability 
distributions constitute the probabilistic input space on which the sampler operates. ��� 

Model: A model is the representation of a physical system (e.g., NPP); it is therefore capable of 
predicting the evolution of a system given a coordinate set in the input space (i.e., the initial condition of 



 

 3 

the system phase space). ���A model, usually, does not belong to RAVEN but it is made available to 
RAVEN by the user either by the available APIs or by coding it directly inside RAVEN as external 
model. 

ROM: The evaluation of the system response, as a function of the coordinates in the uncertain domain 
(also known as input space), is very computationally expensive, which makes brute-force approaches 
(e.g., MC methods) impractical. ROMs are used to lower this cost by reducing the number of needed 
points and prioritizing the area of the uncertain domain that needs to be explored. They are a pure 
mathematical representation of the link between the input and output spaces for a particular system. ��� 

Post-Processors: The post-processors are used to process the datasets resulting from a simulation of a 
system either in RAVEN or via an external code. Post-processors can be used to obtain basic statistical 
information of the data, compare datasets statistically, or discover patterns in the datasets, i.e. data 
mining. 

The list above is not comprehensive of all the RAVEN framework components, which also include 
visualization and storage infrastructure. ��� 

2.2.1 Distributions 

As already mentioned, the perturbation of the input space (initial conditions/parameters affected by 
uncertainties) needs to be performed to account for their probabilistic distributions. RAVEN provides, 
through an interface to the Boost library, the following univariate distributions (with optional truncation):  

• Bernoulli ��� 
• Binomial ��� 
• Exponential ��� 
• Logistic ��� 
• Lognormal ��� 
• Normal ��� 
• Poisson ��� 
• Triangular ��� 
• Uniform ��� 
• Weibull ��� 
• Gamma ��� 
• Beta ��� 
• Categorical. ��� 

The use of univariate distributions for sampling initial conditions is based on the assumption that the 
uncertain parameters are not correlated with each other. Quite often uncertain parameters are subject to 
correlations and thus the univariate approach is not applicable. This happens when a generic outcome 
depends on multiple variables or vice versa. In such cases, the outcome dependency description cannot be 
collapsed to a function of a single variable. RAVEN currently supports N-dimensional (N-D) PDFs both 
in the form of a multivariate normal distribution and user-provided PDFs. The user can provide files 
containing the distribution values on either a Cartesian or sparse grid. Depending on the grid structure 



 

 4 

used to provide the distribution values, RAVEN determines the interpolation algorithm used in the 
evaluation of the imported cumulative distribution function (CDF)/PDF: ��� 

• N-D spline [8] for Cartesian grids   
• Inverse weight [9] for sparse grids.   

Internally, RAVEN provides the needed N-D differentiation and integration algorithms to compute 
the PDF from the CDF and vice versa. This is needed to cover both cases where the user provides the 
PDF or CDF. 

As already mentioned, the sampling methods use distributions to perform a probability-weighted 
exploration of the input space. For example, in the MC approach, a random number ∈    [0 ,1] is generated 
(probability threshold) and the CDF, corresponding to that probability, is inverted to retrieve the 
parameter value used in the simulation. The existence of the inverse for univariate distributions is 
guaranteed by the monotonicity of the CDF. For N-D distributions, this condition is not sufficient since 
the 𝑪𝑫𝑭 𝑿 → 𝟎,𝟏 , 𝒙   ∈ 𝑹𝑵 and therefore, it is not guaranteed to be a bijective function. From an 
application point of view, this means the inverse of an N-D CDF is not unique. 

As an example, Figure 1 shows a multivariate normal distribution for a pipe failure as a function of 
the pressure and temperature. The plane identifies an iso-probability surface (in this case, a line) that 
represents a probability threshold of 50% in this example. Hence, the inverse of this CDF is an infinite 
number of points.  

 

Figure 1: Example of two-dimensional multivariate probability distribution function 

As easily inferable, the standard sampling approach cannot directly be employed. When multivariate 
distributions are used, RAVEN implements a surface search algorithm to identify the iso-probability 
surface location. Once the location of the surface is found, RAVEN chooses, randomly, one point on it 
[10].   

2.2.2 Samplers 

As already mentioned, the sampler is a key entity in the RAVEN framework needed to employ many 
of its capabilities of analysis. Indeed, it performs the driving of the specific sampling strategy and, hence, 
determines the effectiveness of the analysis, from both an accuracy and computational point of view. The 
samplers, that are available in RAVEN, are categorized into three main classes:  



 

 5 

1. Forward  
2. Dynamic event tree (DET) 
3. Adaptive. 

The following subsections briefly introduce the forward and DET samplers. It is also worth 
mentioning that besides the adaptive samplers there is a current effort internally founded at Idaho 
National Laboratory aimed to construct an adaptive sampler for the full representation of the system 
response by polynomial interpolation. Unfortunately the only reference present at this time on this work is 
the RAVEN manual. [3]  

2.2.2.1 Forward Samplers 

The forward sampler category collects all the strategies that perform the sampling of the input space 
without exploiting, through dynamic learning approaches (active learning), the information made 
available from the outcomes of calculation previously performed (adaptive sampling) and the common 
system evolution (patterns) that different sampled calculations can generate in the phase space (DET).  

In the RAVEN framework, several different forward samplers are available:  

• MC ��� 
• Stratified (if equally spaced in probability ->LHS) ��� 
• Grid-based ��� 
• Factorial designs: ��� 

— Full factorial ��� 
— Two-level fractional-factorial ��� 
— Plackett-Burman ��� 

• Response surface designs:  
— Box-Behnken ��� 
— Central composite ��� 

• Stochastic collocation. ��� 

Since most of the forward sampling strategies previously listed are well known, they are not fully 
described in this report. More details regarding the MC, stratified, and grid sampling strategies are found 
in Ref. [11]; details regarding the factorial and response surface designs are found in Ref. [4]. In 
conclusion, detailed information about the stochastic collocation method is found in Ref. [12]. ��� 

2.2.2.2 Dynamic Event Tree Sampler 

To clarify the idea behind the DET sampler currently available in RAVEN, a brief overview is 
needed. In technologically complex systems, such as NPPs, an accident scenario begins with an initiating 
event and then evolves over time through the interaction of deterministic and stochastic events. This 
mutual action leads to the production of infinitely many different outcomes. When for the same point in 
the input space the system might generate more than one final state the input output correspondence is not 
anymore bijective. At any time along the trajectory of the system in the phase space, the system might 
take a different path that is determined by a multivariate PDF. Since the continuous problem is almost 
intractable, an approximate approach is needed to perform the PRA analysis. An approximation 
alternative is offered by the DET approach.  



 

 6 

In PRA analysis, in the conventional event tree [13] approaches, branches are used to differentiate 
among different statuses of the system and they do not have a temporal meaning (e.g., auxiliary generator 
working/not working). This approach lacks the capability to evaluate the impact of timing of the transition 
between different states of the system (in reality some treatment is possible but in a very costly fashion). 
To overcome these limitations, a “dynamic” approach is needed. The DET [13] technique brings several 
advantages, among which is the fact that it simulates probabilistic system evolution in a way that is 
consistent with its deterministic time evolution. This is done by taking the timing of events explicitly into 
account, leading to a more realistic and mechanistically consistent analysis of the possible evolution of 
the system. This feature of the DET is very important, for example, when the complexity of the system 
leads to strong non-linear responses that characteristically evolve over time (the non-linear structure of 
the system strongly changes during the time evolution of the scenario). This result is obtained by “letting” 
the system code determine the pathway of an accident scenario within a probabilistic “environment.”  

This strategy requires a tight interaction between the system code and sampling driver (i.e., RAVEN 
framework). In addition, the system code must have a control logic capability (i.e., trigger system). For 
these reasons, the application of this sampling approach to a generic code needs more effort when 
compared to the other samplers available in RAVEN. Currently, the DET is fully available for the 
thermal-hydraulic codes RELAP-7 and RELAP5-3D (still in beta version). [14]  

2.2.3 Models 

The model entity, in the RAVEN environment, represents a “connection pipeline” between the input 
and output spaces. The RAVEN framework does not own any physical model (i.e., it does not possess the 
equations needed to simulate any physical system), but implements application program interfaces (APIs) 
to these models, which are supplied by the user. The RAVEN framework provides APIs for three 
different model categories:  

• Codes ��� 
• Externals ��� 
• ROMs. ��� 

The code model represents the communication pipe between the RAVEN and any external 
software. ���Currently, RAVEN has implemented APIs for RELAP5-3D, RELAP-7, any Multi-Physics 
Object-Oriented Simulation Environment (MOOSE)-based [15] application, and the PHISICS code [16]. ��� 

The external model allows the user to create, in a Python file (imported, at run-time, in the RAVEN 
framework), her/his own model (e.g., set of equations representing a physical model, connection to 
another code, or control logic.). This model is interpreted/used by the framework and, at run-time, 
becomes part of RAVEN itself.  

Direct software interfaces or files perform the data exchange between RAVEN and the system code. 
If the system code is parallelized, data exchange by files is generally the preferred method since it is more 
optimized for large clusters.  



 

 7 

2.2.3.1 Post-Processors 

A Post-Processor (PP) in RAVEN can be considered as an action performed on a set of data or other 
type of objects. Most of the post-processors contained in RAVEN, employ a mathematical operation on 
the data given as “input” to the post-processor. RAVEN supports several different types of PPs.  

Currently, the following PPs are available in RAVEN:  

• Basic Statistics: computes the basic statistical characteristics of a given dataset.  It contains 
algorithms to compute many of the most common statistic quantities.  

• Comparison Statistics: computes statistics for comparing two different datasets. 
• Safest Point: finds the farthest point from a given limit surface, thus  “Safest Point”. 
• Limit Surface: identifies the transition zones that determine a change in the status of the 

system, e.g. fail or pass.  
• Limit Surface Integral: computes the probability of an event, whose boundaries are 

represented by a Limit Surface, given as an input either from “Limit Surface” PP or 
“Adaptive Sampling”.  

• External Post-Processor: executes any arbitrary python function defined externally using the 
“Functions” interface. 

• Topological Decomposition: computes approximated hierarchical Morse-Smale complex 
(AMSC) and performs linear regression on each component. 

• Data Mining: identifies the patterns in the given dataset by employing the unsupervised 
learning algorithms of choice found in the SciKit-Learn library [7]. 

The PPs allow the users to understand the correlation between the input space and output space as 
well as to identify the importance of the parameters in the input space with respect to an FOM, which 
allows the user to clearly identify the operational bounding box of the system.  

2.2.4 Simulation Environment  

Figure 2 shows a schematic representation of the whole framework, highlighting the communication 
pipes among the different modules and engines. As seen in Figure 2, all the components discussed so far 
are addressed. In addition, the data management, mining, and processing modules are shown.  



 

 8 

 

Figure 2: RAVEN schematic module interaction 

From a user’s standpoint, RAVEN is perceived as a pool of tools and data. Any action in which the 
tools are applied to the data is considered a ‘step’ in the RAVEN environment. Since this report is 
focused on post-processing algorithms, that require processing of the output data, only the “step” that is 
designed for this task (PostProcess) is mentioned.  

The “PostProcess” step is designed to post-process data or to manipulate RAVEN entities. It is aimed 
at performing a single action that is employed by a “Model” of type “PostProcessor”.  The post-processor 
step requires at least one input entity, which is generally a “DataObjects”, and an output entity. The type 
of the output entity depends on the type of the PostProcessor used as a “Model”.   

The job handler, at the center of Figure 2 is currently capable of running different instances of a code 
in parallel and can also handle codes that are internally multithreaded or use any form of message passing 
interface in a parallel implementation.  

RAVEN is capable of plotting the simulation outcomes. The plotting can be performed either at the 
end of sampling or simultaneously with the sampling process. RAVEN is also capable of storing the data 
in a text file in CSV format or in an HDF5 format database file for later recovery. To illustrate the 
plotting capabilities of RAVEN all the plots in this report were generated directly through RAVEN. 

RAVEN&Infrastructure&

Models&

ROM& External&
Models&

External&Codes&
Interface&

Samplers& Distribu>ons&

Steps&
&&

JobHandler&

Data&structures&

Data&Mining&
Sta>s>cal&analysis&

Run&1&

Run&…&

Run&..&

Run&2&

Run&N&

External&storage&
(database,&files)&



 

 9 

3. DATA MINING ALGORITHMS 

Knowledge discovery in databases (KDD) is the process of discovering useful/hidden knowledge 
from a collection of data. Several methods are available in extracting patterns that provide valuable, 
previously unknown, insight into the data. This information can be predictive or descriptive in nature. 
Data mining is the pattern extraction phase of KDD. Many algorithms can be used for data mining; the 
choice depends on the desired results. Major data mining application areas include marketing, fraud 
detection, telecommunication, and manufacturing.  

The overall goal of the data mining process is to extract information from a data set and transform it 
into an understandable structure for further use. The actual data mining task is the automatic or semi-
automatic analysis of large quantities of data to extract previously unknown: 

• Interesting patterns such as groups of data records (cluster analysis), 
• Unusual records (anomaly detection), and  
• Dependencies (association rule mining).  

This usually involves using database techniques such as spatial indices. These patterns can then be 
seen as a kind of summary of the input data, and may be used in further analysis or, for example, in 
machine learning and predictive analytics. For example, data mining might identify multiple groups in the 
data, which can then be used to obtain more accurate prediction results by a decision support system. 
Neither the data collection (data preparation) nor resulting interpretation and reporting are part of the 
data-mining step, but do belong to the overall KDD process as additional steps. Although the KDD 
process involves many steps, this report focuses mainly on the implementation of the available data 
mining methods, especially focusing on cluster analysis, to RAVEN and application of these algorithms 
to sample datasets.  

3.1 SciKit-Learn Algorithms 

SciKit-learn is an open source, commercially usable, community-effort machine-learning library 
developed in Python. It contains simple and efficient tools for data mining and data analysis. Scikit-learn 
is built-on “NumPy”, “SciPy” and “matplotlib”, which are already a part of RAVEN code. It contains 
several machine-learning algorithms, supervised or unsupervised. The available unsupervised machine-
learning algorithms are described in the following sections. ��� 

3.1.1 Gaussian Mixture Models   

A Gaussian Mixture Model (GMM) is a probabilistic model that assumes all the data points are 
generated from a mixture of a finite number of Gaussian distributions with unknown parameters. The 
GMMs are like kernel density estimates, but with a small number of components. Mixture models can be 
seen as a soft version of “k-means” clustering to incorporate information about the covariance structure of 
the data as well as the centers of the latent Gaussians.  Scikit-learn implements different classes to 
estimate GMMs, which correspond to different estimation strategies. The details are shown in the 
following sections.  

Figure 3 illustrates how a RAVEN plot would look like when a GMM classifier algorithm with a 
“spherical” covariance type is applied to a dataset with 6 well-defined clusters. The dataset here is created 
with the “blobs” method found in the scikit-learn library (sklearn.datasets.blobs), which generates 
isotropic Gaussian blobs for clustering and thus should be well suited for analyzing with a GMM method.  



 

 10 

 

Figure 3: Gaussian Mixture Model classifier applied to an arbitrary dataset generated with the Scikit-learn 
Blobs module. 

3.1.1.1 GMM classifier  

The GMM object implements the expectation-maximization (EM) algorithm for fitting a mixture of 
Gaussian models. It can also draw confidence ellipsoids for multivariate models, and compute the 
Bayesian Information Criterion (BIC) to assess the number of clusters in the data as shown in Figure 3.  

The GMM comes with different options to constrain the covariance of the difference classes 
estimated: spherical, diagonal, tied or full covariance.  

GMM is the fastest algorithm for learning a mixture model. This algorithm does not bias the means 
towards zero; it maximizes only the likelihood. However, when one has insufficient points per mixture, 
the algorithm is known to diverge and find solutions with infinite likelihood unless the covariances are 
artificially regularized. This algorithm always uses all of the components to which it has access. In the 
absence of external cues it needs held-out data or information theoretical criteria to decide how many 
components to use. 

The Bayesian Information Criterion (BIC), which is a criterion for model selection among a finite set 
of models, can be used to select the number of components in a classical GMM. In theory, it recovers the 
true number of components only in the asymptotic regime (i.e. if a large amount of data is available).  

In learning GMMs from unlabeled data, the information of which point comes from which latent 
component is usually not known. If this information is available, it is easy to fit a separate Gaussian 
distribution to each set of points. Expectation-maximization (EM) is a well-established statistical 



 

 11 

algorithm to get around this problem through an iterative process. First one assumes random components 
(randomly centered on data points, either learned from “k-means”, or it can be just normally distributed 
around the origin) and computes for each point a probability of being generated by each component of the 
model. Then, one tweaks the parameters to maximize the likelihood of the data given those assignments. 
Repeating this process is guaranteed to always converge to a local optimum.  

3.1.1.2 Dirichlet Process GMM Classifier (DPGMM)  

 The DPGMM implements a variant of the Gaussian mixture model with a variable (but bounded) 
number of components using the Dirichlet process, which is a probability distribution whose domain is 
itself a set of probability distributions. It is often used to describe the prior knowledge about the 
distribution of random variables. Although it increases the computational time, this algorithm doesn’t 
require the user to choose the number of components. It only requires the user to specify an upper bound 
for the number of components and a concentration parameter. Concentration parameter is a special kind 
of parameter of a probability distribution. It can be thought as a parameter for determining how 
“concentrated” the probability mass of a sample from a Dirichlet distribution is likely to be. 

3.1.1.3 Variational GMM Classifier (VBGMM)   

The VBGMM implements a variant of the Gaussian mixture model with variational inference 
algorithms. It has some of the Dirichlet process properties; therefore it can be seen as a middle ground 
between GMM and DPGMM. 

 The variational solutions have less special cases than EM solutions because of the incorporation of 
prior information. It is an extension of EM that maximizes a lower bound on model evidence (including 
priors) instead of data likelihood. Both variational methods and EM are iterative algorithms that alternate 
between finding the probabilities for each point to be generated by each mixture and fitting the mixtures 
to these assigned points. The integration of prior information avoids the singularities often found in EM. 
However, this introduces biases to the model. It will bias all means towards the origin and it will bias the 
covariance to be more spherical. Due to its Bayesian nature, the variational algorithm needs more hyper-
parameters than expectation-maximization, the most important of these being the concentration parameter 
alpha. Specifying a high value of alpha leads more often to uniformly-sized mixture components, while 
specifying small (between 0 and 1) values will lead to some mixture components getting almost all the 
points while most mixture components will be centered on just a few of the remaining points. 

3.1.2 Cluster Analysis   

Cluster analysis is the task of grouping the dataset in such a way that each data in the same group 
(“cluster”) shows more similar characteristics than the data in the other groups (“clusters”). Cluster 
analysis is not an algorithm but the task to be performed. Several algorithms are used for clustering 
analysis; these algorithms can be significantly different in terms of what they consider a cluster and how 
efficiently they find them. 

An overview of the different clustering algorithms found in Scikit-Learn is given in Table 1. Figure 4 
illustrates the application of several clustering algorithms to the same datasets; note that all three datasets 
are 2 dimensional. Algorithms might show different behavior on very high dimensional datasets. The 
advantage of using the non-flat geometry clustering algorithms, such as DBSCAN, when the clusters have 
a certain shape, i.e. the Euclidian distance is not the right metric, is also illustrated in Figure 4: in the 
bottom two rows.  



 

 12 

Non-flat geometry clustering is useful when the clusters have a specific shape, i.e. a non-flat 
manifold, and the standard Euclidean distance is not the right metric. Gaussian mixture models, useful for 
clustering, are described in previous section [3.1.1]. K-Means can be seen as a special case of Gaussian 
mixture model with equal covariance per component. 

  

Figure 4: Clustering algorithms applied to sample datasets (left-to-right: K-Means, Mini Batch K-Means, 
Mean Shift, Spectral Clustering and DBSCAN). 

Table 1: Overview of Clustering Algorithms [7] 
Clustering 
Algorithm 
name  

Parameters  Scalability  Use case  Geometry 
(metric used)  

K-Means  Number of 
clusters  

Very large n 
samples, medium n 
clusters with Mini 
Batch code  

General-purpose, 
even cluster size, flat 
geometry, not too 
many clusters  

Distances 
between points  

Affinity 
propagation  

Damping, 
sample 
preference  

Not scalable with n 
samples  

Many clusters, 
uneven cluster size, 
non-flat geometry  

Graph distance 
(e.g. nearest- 
neighbor graph)  

Mean-shift  Bandwidth  Not scalable with n 
samples  

Many clusters, 
uneven cluster size, 
non-flat geometry  

Distances 
between points  



 

 13 

Spectral 
clustering  

Number of 
clusters  

Medium n samples, 
small n clusters  

Few clusters, even 
cluster size, non-flat 
geometry  

Graph distance 
(e.g. nearest- 
neighbor graph)  

Ward 
hierarchical 
clustering  

Number of 
clusters  

Large n samples and 
n clusters  

Many clusters, 
possibly connectivity 
constraints  

Distances 
between points  

Agglomerative 
clustering  

Number of 
clusters, 
linkage type, 
distance  

Large n samples and 
n clusters  

Many clusters, 
possibly connectivity 
constraints, non 
Euclidean distances  

Any pairwise 
distance  

DBSCAN  Neighborhood 
size  

Very large n 
samples, medium n 
clusters  

Non-flat geometry, 
uneven cluster sizes  

Distances 
between nearest 
points  

Gaussian 
mixtures  Many  Not scalable  Flat geometry, good 

for density estimation  
Mahalanobis 
distances to 
centers  

 

3.1.2.1 K-Means Algorithm 

K-means algorithm is often referred to as Lloyd’s algorithm. It separates the samples in n groups of 
equal variance, minimizing the within-cluster sum-of-squares, which is also known as the “inertia”. This 
algorithm requires the number of clusters to be specified. It scales well to large number of samples and 
has been used across a large range of application areas in many different fields.  

The k-means algorithm divides a set of N samples X into K separate clusters C, each described by the 
mean µj of the samples in the cluster. The means are called the “cluster centroids”; the cluster centroids 
are not always points from X, although they are in the same space. The K-means algorithm aims to 
choose centroids that minimize the inertia:  

min
!!!"

𝑥! − 𝜇!
!

!

!!!

 

Inertia, or the within-cluster sum of squares criterion, can be recognized as a measure of how 
internally coherent clusters are. It suffers from various drawbacks:  

• It assumes that clusters are convex and isotropic. It responds poorly to elongated clusters, or 
manifolds with irregular shapes.  

• It is not a normalized metric: the lower values are better and zero is optimal. However, in 
very high-dimensional spaces, Euclidean distances tend to become inflated (so-called “curse 
of dimensionality”). Applying a dimensionality reduction algorithm prior to “k-means” 
clustering can alleviate this problem and speed up the computations.  

The k-means algorithm has three steps: (1) choose the initial centroids; with the most basic method 
being to choose k samples from the dataset X, (2) assign each sample to its nearest centroid. And (3) 
create new centroids by taking the mean value of all of the samples assigned to each previous centroid. 
The algorithm iterates between the steps (2) and (3). The iteration repeats until the difference between the 



 

 14 

old and the new centroids is less than a threshold. In other words, it iterates until the centroids do not 
move significantly.   

K-means will always converge if given enough time, however this may be to a local minimum. This 
is highly dependent on the initialization of the centroids. In practice, the analysis is often done several 
times, with different initializations of the centroids. The “k-means++” initialization scheme, which has 
been implemented in Scikit-learn, can aid in addressing this issue, as it initializes the centroids to be 
distant from each other, which leads to better results than random initialization, in such cases.    

3.1.2.2   Mini Batch K-Means Algorithm  

The Mini Batch K-Means algorithm is a variant of the K-Means algorithm.  It uses mini-batches to 
reduce the computation time. Mini-batches are subsets of the input data, which are randomly sampled in 
each training iteration.   

The algorithm iterates between two major steps: (1) b samples are drawn randomly from the dataset, 
to form a mini-batch. These are then assigned to the nearest centroid. (2) The centroids are updated, as in 
the k-means algorithm. However, in contrast to k-means, this is done on a per-sample basis. For each 
sample in the mini-batch, the assigned centroid is updated by taking the streaming average of the sample 
and all previous samples assigned to that centroid. The algorithm iterate between these steps until 
convergence or a predetermined number of iterations is reached. Mini Batch K-Means converges faster 
than K-Means, but the quality of the results is reduced. In practice this difference in quality can be quite 
small.  

3.1.2.3 Affinity Propagation Algorithm 

Affinity Propagation creates clusters by sending messages between pairs of samples, i.e. it is based on 
the concept of “message passing”. Unlike other clustering algorithms such as “k-means” affinity 
propagation does not require the number of clusters to be determined before running the algorithm.  

Affinity propagation describes the dataset using a small number of exemplars, which are the member 
of the input set representative of the clusters. The messages sent between pairs represent the suitability for 
one sample to be the exemplar of the other, which is updated in response to the values from other pairs. 
This updating happens iteratively until convergence, at which point the final exemplars are chosen, and 
hence the final clustering is given.  

Although Affinity Propagation does not require the determination of the number of clusters prior to 
running because it chooses the number of clusters, the main drawback of Affinity Propagation is its 
complexity. The algorithm has a time complexity of the order 𝑂 𝑁!𝑇 , where N is the number of samples 
and T is the number of iterations until convergence. Furthermore, the memory complexity is of the order 
𝑂 𝑁!  if a dense similarity matrix is used, but reducible if a sparse similarity matrix is used. Therefore 
the Affinity Propagation is most appropriate for small to medium sized datasets.  

The messages sent between points belong to one of two categories. The first is the responsibility 
𝑟 𝑖, 𝑘 , which is the accumulated evidence that sample k should be the exemplar for sample i. The second 
is the availability 𝑎 𝑖, 𝑘  that is the accumulated evidence that sample i should choose sample k to be its 
exemplar, and considers the values for all other samples that k should be an exemplar. In this way, 
exemplars are chosen by samples if they are (1) similar enough to many samples and (2) chosen by many 
samples to be representative of themselves.  



 

 15 

More formally, the responsibility of a sample k to be the exemplar of sample i is given by: 

𝑟 𝑖, 𝑘 ← 𝑠 𝑖, 𝑘   −   𝑚𝑎𝑥 𝑎 𝑖, 𝑘 + 𝑠 𝑖, 𝑘 ∀𝑘 ≠ 𝑘  

Where 𝑠 𝑖, 𝑘 is the similarity between samples i and k. The availability of sample k to be the 
exemplar of sample i is given by:  

𝑎 𝑖, 𝑘 ← 𝑚𝑖𝑛 0, 𝑟 𝑘, 𝑘 + 𝑟 𝚤, 𝑘 + 𝑟 𝚤, 𝑘
!  !.!.!∉ !,!

 

To begin with, all values for r and a are set to zero, and the calculation of each iterates until 
convergence. 

3.1.2.4  Mean Shift  Algorithm 

Mean Shift clustering is a nonparametric clustering technique, which does not require prior 
knowledge of the number of clusters in the dataset. It is a centroid-based algorithm, which aims to 
discover blobs in a smooth density of samples. It works by updating candidates for centroids to be the 
mean of the points within a given region. These candidates are then filtered in a post-processing stage to 
eliminate near-duplicates to form the final set of centroids.  Given a candidate centroid xi for iteration t, 
the candidate is updated according to the following equation: 

𝑥!!!! = 𝑥!! +𝑚 𝑥!!  

Where 𝑁 𝑥!  is the neighborhood of samples within a given distance around xi and m is the mean 
shift vector. The mean shift vector is computed for each centroid. It always points toward the direction of 
the maximum increase in the density of points. Mean shift vector is computed using the following 
equation, effectively updating a centroid to be the mean of the samples within its neighborhood:  

𝑚 𝑥! =
𝐾 𝑥! − 𝑥! 𝑥!!!∈! !!

𝐾 𝑥! − 𝑥!!!∈! !!
 

The algorithm is not highly scalable, as it requires multiple nearest neighbor searches during the 
execution. However, it is guaranteed to converge. Because the mean shift procedure, obtained by 
successive: 

• computation of the mean shift vector 𝑚 𝑥!! ,  
• translation of the window 𝑥!!!! = 𝑥!! +𝑚 𝑥!! , 

is guaranteed to converge to a point where the gradient of density function is zero. The algorithm will 
stop iterating when the change in centroids is small.  

3.1.2.5  Spectral Clustering Algorithm 

 Spectral Clustering does a low-dimension embedding of the affinity matrix between samples, 
followed by a K-means in the low dimensional space. Spectral Clustering requires the number of clusters 



 

 16 

to be specified. It works well for a small number of clusters and it is not advised when using many 
clusters.  It solves a convex relaxation of the normalized cuts problem on the similarity graph: for two 
clusters, it cuts the graph in two so that the weight of the edges cut is small compared to the weights of 
the edges inside each cluster.   

If the values of the affinity matrix are not well distributed, e.g. with negative values or with a distance 
matrix rather than a similarity, the spectral problem will be singular and the problem is not solvable. In 
which case a transformation should be applied to the entries of the matrix. For instance, in the case of a 
signed distance matrix, is common to apply a heat kernel:   

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑒𝑥𝑝 −β
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝜎!"#$%&'(

 

Spectral Clustering basically applies clustering to a projection to the normalized Laplacian. In 
practice, Spectral Clustering is very useful when the structure of the individual clusters is highly non-
convex or more generally when a measure of the center and spread of the cluster is not a suitable 
description of the complete cluster. For instance, when clusters are nested circles on the 2D plan (Figure 
4: middle row).  

3.1.2.6 DBSCAN Clustering Algorithm 

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm views 
clusters as areas of high density of data points. The data points in the low-density areas are seen as noise 
and border points, which are actually separating the clusters. Clusters found by DBSCAN can be any 
shape because of this approach.  

The main element of the DBSCAN algorithm is the concept of core samples, which are samples that 
are in areas of high density. Therefore, a cluster is a set of core samples, each close to each other 
(measured by some distance measure) and a set of non-core samples that are close to a core sample (but 
are not themselves core samples). There are two parameters to the algorithm: min_samples and eps. 
Higher min_samples or lower eps indicate higher density necessary to form a cluster.  

A cluster is a set of core samples, that can be built by recursively by taking a core sample, finding all 
of its neighbors that are core samples, finding all of their neighbors that are core samples, and so on. A 
cluster also has a set of non-core samples, which are samples that are neighbors of a core sample in the 
cluster but are not themselves core samples; these are on the borders of a cluster.  

The DBSCAN algorithm finds core samples of high density and expands clusters from them. It is 
good for data, which contains clusters of similar density.  

3.1.2.7 Clustering performance evaluation  

Evaluating the performance of a clustering algorithm is not a trivial task as counting the number of 
errors or the precision. Especially, any evaluation metric should take into account if it defines the 
separations of the data to some ground truth set of classes or if it satisfies that the members belong to the 
same class are more similar than that members of different classes according to some similarity metric. 

If the ground truth labels are not known, evaluation must be performed using the model itself. The 
Silhouette Coefficient is an example of such an evaluation, where a higher Silhouette Coefficient score 



 

 17 

relates to a model with better-defined clusters. The Silhouette Coefficient is defined for each sample and 
is composed of two scores:  

1. The mean distance between a sample and all other points in the same cluster (𝑎). 
2. The mean distance between a sample and all other points in the next nearest cluster (𝑏). 

The Silhouette Coefficient s for a single sample in terms of 𝑎 and 𝑏 is then given as: 

𝑠 =
𝑏 − 𝑎

𝑚𝑎𝑥 𝑎, 𝑏
 

The Silhouette Coefficient for a set of samples is given as the mean of the Silhouette Coefficient for 
each sample.  

The Silhouette coefficient is bounded between -1 for incorrect clustering and +1 for highly dense 
clustering. Scores around zero indicate overlapping clusters. The score is higher when clusters are dense 
and well separated. The Silhouette Coefficient is generally higher for convex clusters than other concepts 
of clusters, such as density based clusters like those obtained through DBSCAN.  

3.1.3 Dimensionality Reduction Techniques  
The dimensionality reduction techniques are usually performed to high-dimensional datasets before 

applying the data mining algorithms in order to avoid the effects of the “curse of dimensionality”. The 
dimension reduction reduces the time and storage required while it makes it easier to visualize the data 
reduced to very low dimension, such as 2D or 3D. The removal of multi-collinearity improves the 
performance of the machine learning.  

3.1.3.1 Principal Component Analysis (PCA)  

PCA converts a set of correlated or uncorrelated variables into a set of linearly uncorrelated variables 
called principal components using an orthogonal transformation. The number of principal components 
cannot be larger than the number of original variables. The first principal component has the largest 
possible variance, and each succeeding component has the highest variance possible under the constraint 
that it is orthogonal to the preceding component(s). The resulting vectors are an uncorrelated orthogonal 
basis set.  

Application of PCA algorithm to Iris dataset from scikit-learn library is illustrated in Figure 5. Iris 
dataset consists of 3 different types of irises’ petal and sepal length and it has 4 features. Figure 5 shows 
the dataset when projected to 2 most important dimensions. 

Exact PCA and probabilistic interpretation  

PCA is used to decompose a multivariate dataset in a set of successive orthogonal components that 
explain a maximum amount of the variance. In scikit-learn, PCA is implemented as a transformer 
object that learns n components in its fit method, and can be used on new data to project it on these 
components. 



 

 18 

 

Figure 5: PCA implementation 

Approximate PCA (or Randomized PCA) 

The approximate PCA is a linear dimensionality reduction using an approximated Singular Value 
Decomposition (SVD) of the data. It keeps only the most significant singular vectors to project the data to 
a lower dimensional space. The PCA algorithm can be used to linearly transform the data while both 
reducing the dimensionality and preserving most of the explained variance at the same time. 

Kernel PCA  

Kernel PCA is an extension of PCA, which achieves non-linear dimensionality reduction through the 
use of kernels. It has many applications including denoising, compression, and structured prediction 
(kernel dependency estimation).  

Sparse PCA and Mini Batch Sparse PCA  

Sparse PCA has the goal of extracting the set of sparse components that best reconstruct the data. 
Mini-batch sparse PCA is a variant of Sparse PCA that is faster but less accurate. Iterating over small 
chunks of the set of features increases the speed. 

3.1.3.2 Truncated SVD and Latent Semantic Analysis (LSA) 

 Truncated SVD implements a variant of (SVD) that only computes the user specified k largest 
singular values.  



 

 19 

LSA transforms term-document matrices to a “semantic” space of low dimensionality if the truncated 
SVD is applied to such matrices. LSA is mentioned here because it is available in the Scikit Library, and 
the API is present in RAVEN. However, LSA is more geared for natural language processing. 

3.1.3.3  Independent Component Analysis (ICA)  
Independent component analysis separates a multivariate signal into additive subcomponents that are 

maximally independent. ICA is typically used for separating superimposed signals, not for reducing 
dimensionality. Whitening, which is simply a linear change of coordinate of the mixed data, must be 
applied in ICA model for the model to be correct, because it does not include a noise term. This can be 
done internally using the whiten argument or manually using one of the PCA variants.  

3.1.4 Manifold Learning Algorithms 

A manifold is a topological space that resembles a Euclidean space locally at each point. Manifold 
learning is an approach to non-linear dimensionality reduction. It assumes that the data of interest lie on 
an embedded non-linear manifold within the higher-dimensional space. If this manifold is of low 
dimension, data can be visualized in the low-dimensional space. Algorithms for this task are based on the 
idea that the dimensionality of many data sets is only artificially high. 

Manifold learning can be thought of as an attempt to generalize linear frameworks like PCA to be 
sensitive to non-linear structure in data. A typical manifold learning is unsupervised, even though 
supervised variants do exist. It learns the high-dimensional structure of the data from the data itself and 
does not require the use of predetermined classifications. 

The manifold learning implementations available in scikit-learn are summarized in the sections 
below. 

3.1.4.1 Isometric Mapping Learning 

Isometric Mapping (Isomap) is one of the earliest approaches to manifold learning. It can be viewed 
as an extension of Multi-dimensional Scaling (MDS) or Kernel PCA. Isomap assumes that the pair-wise 
distances are only known between neighboring points, and uses the Floyd–Warshall algorithm to compute 
the pair-wise distances between all other points. Isomap estimates a lower-dimensional embedding which 
maintains geodesic distances between all points.  

The Isomap algorithm comprises three stages: 

1. Nearest neighbor search. Isomap uses sklearn.neighbors.BallTree for an 
efficient neighbor search. The cost is approximately 𝑂 𝐷 log 𝑘 𝑁 log 𝑁 , for k nearest 
neighbors of N points in D dimensions. 

2. Shortest-path graph search. The most efficient known algorithms for this are Dijkstra’s 
Algorithm, which is approximately 𝑂 𝑁! 𝑘 + log 𝑁 ,  or the Floyd-Warshall algorithm, 
which is 𝑂 𝑁!  The algorithm can be selected by the user with the path_method keyword 
of Isomap. If unspecified, the code attempts to choose the best algorithm for the input data. 

3. Partial eigenvalue decomposition. The embedding is encoded in the eigenvectors 
corresponding to the d largest eigenvalues of the 𝑁×𝑁 isomap kernel. For a dense solver, the 
cost is approximately 𝑂 𝑑𝑁! . This cost can often be improved using the ARPACK solver. 
The eigensolver can be specified by the user with the path_method keyword of Isomap. If 
unspecified, the code attempts to choose the best algorithm for the input data. 



 

 20 

The overall complexity of Isomap is 𝑂 𝐷 log 𝑘 𝑁 log 𝑁 + 𝑂 𝑁! 𝑘 + log 𝑁 + 𝑂 𝑑𝑁!  

N: number of training data points 

D: input dimension 

k: number of nearest neighbors 

d: output dimension 

3.1.4.2 Locally Linear Embedding  

Locally linear embedding (LLE) seeks a lower-dimensional projection of the data, which preserves 
distances within local neighborhoods. LLE begins by finding a set of the nearest neighbors of each point. 
It then computes a set of weights for each point that best describe the point as a linear combination of its 
neighbors. Finally, it uses an eigenvector-based optimization technique to find the low-dimensional 
embedding of points, such that each point is still described with the same linear combination of its 
neighbors. 

The standard LLE algorithm comprises three stages: 

1. Nearest Neighbors Search. See discussion under Isomap above. 

2. Weight Matrix Construction. 𝑂 𝐷𝑁𝑘!  The construction of the LLE weight matrix 
involves the solution of a k×k linear equation for each of the N local neighborhoods 

3. Partial Eigenvalue Decomposition. See discussion under Isomap above. 

The overall complexity of standard LLE is 𝑂 𝐷 log 𝑘 𝑁 log 𝑁 + 𝑂 𝐷𝑁𝑘! + 𝑂 𝑑𝑁! . 

N : number of training data points 

D : input dimension 

k : number of nearest neighbors 

d : output dimension 

3.1.4.3 Spectral Embedding 

Spectral Embedding (also known as Laplacian eigenmaps) calculates a non-linear embedding. It relies 
on the assumption that the data lies on a low-dimensional manifold in a high-dimensional space. It finds a 
low-dimensional representation of the data using a spectral decomposition. Laplacian eigenmaps builds a 
graph from neighborhood information of the data set. The graph generated can be considered as a discrete 
approximation of the low dimensional manifold in the high dimensional space. Minimization of a cost 
function based on the graph ensures that points close to each other on the manifold are mapped close to 
each other in the low dimensional space, preserving local distances.  

The Spectral Embedding algorithm comprises three stages: 

1. Weighted Graph Construction. Transform the raw input data into a graph representation 
using an affinity (adjacency) matrix representation. 

2. Graph Laplacian Construction. An unnormalized graph Laplacian is constructed as 

𝐿 = 𝐷 − 𝐴 and normalized one as 𝐿 = 𝐷!
!
! 𝐷 − 𝐴 𝐷!

!
! . 

3. Partial Eigenvalue Decomposition. Eigenvalue decomposition is done on the graph 
Laplacian 



 

 21 

The overall complexity of spectral embedding is 𝐷 log 𝑘 𝑁 log 𝑁 + 𝑂 𝐷𝑁𝑘! + 𝑂 𝑑𝑁! . 

N : number of training data points 

D : input dimension 

k : number of nearest neighbors 

d : output dimension 

3.1.4.4 Multi-dimensional Scaling (MDS) 
MDS represents the data in low dimensional space in a way that the distances respect well the 

distances in the original high-dimensional space. MDS is used for analyzing similarity or dissimilarity 
data.  

There are two MDS algorithms: metric and non-metric. In Metric MDS, the input similarity matrix 
arises from a metric; the distances between two output points are then set to be as close as possible to the 
similarity or dissimilarity data. In the non-metric version, the algorithms try to preserve the order of the 
distances, and hence seek for a monotonic relationship between the distances in the embedded space and 
the similarities/dissimilarities. 

 

3.2 Topology Post Processor 
A new post-processor has been added to the RAVEN framework that is capable of decomposing 

arbitrary dimension input data mapped into a scalar function, that is a single output variable of interest 
modeled as a function of one or more parameters.  The decomposition separates the input data space into 
monotonic regions as well as identifies the presence of local extrema. Such information can be useful for 
understanding the data from a structural point of view, but also these monotonic regions can be used to fit 
local low order models (linear) in order to better understand the main drivers over the separate regions of 
the input domain. In this way, RAVEN is able to create a structured sensitivity analysis that gives more 
useful information about input landscapes that are not monotonically increasing as compared to a global 
sensitivity analysis. In addition, being able to identify the location of local maxima and minima of an 
input dataset can be useful for determining areas of interest when further exploring the input domain in 
optimization problems or understanding the occurrence of important physical phenomena of a simulation. 

Section 3.2.1 details the theory and algorithm used to approximate the aforementioned decomposition 
known as the Morse-Smale complex on a finite number of data points and explain an optional user 
interface used to augment the analysis of the algorithm’s results. In Section 3.2.2, further use of the 
topological decomposition in RAVEN is investigated by using it as a ROM [17]. 

3.2.1 Implementation Details 
The decomposition employed is derived from a branch of topology called Morse theory, and assumes 

the input represents a differentiable manifold space and the output is given as a smooth, real-valued 
function defined over the input space. Furthermore, this function should not have any degenerate critical 
points (witnessed by a singular Hessian matrix). Note, that since this structure is approximated on finite 
data, these restrictions only constrain the use to datasets that can be modeled as such. For example, a 
discrete step function can still be modeled as a smooth function. In some instances where a phenomenon 
under study is non-deterministic, it may make sense to obtain an average or nominal value per location in 
the input space, as the algorithm cannot handle duplicate input points.  

Given a smooth function defined over a differentiable input space, any location in the input space can 
be traced from a source local minimum to a sink local maximum using the gradient direction of the 
function. An ascending (or unstable) manifold is composed of all locations that originate at the same local 
minimum, and the collection of ascending manifolds partition the input domain. Likewise, all locations 



 

 22 

that terminate at the same local maximum comprise a descending (or stable) manifold. The collection of 
all descending manifolds over an input space is known as the Morse complex. The intersection of the 
ascending and descending manifolds creates the Morse-Smale complex and the relationship of these 
structures is demonstrated in Figure 6 

 
Figure 6: An example function decomposed into: (a) descending manifolds, (b) ascending manifolds, and 
(c) the Morse-Smale complex. Red dots represent local maxima, blue represent local minima, and green 
points represent saddle points. 

In order to approximate this complex on finite data, a connectivity structure is imposed on the data 
such that the gradient direction can be estimated for each sample point. RAVEN provides three different 
types of neighborhood graphs that can be applied to the data before the topology is extracted.  The first is 
the k-nearest neighbor graph that has a free parameter, k, specifying the number of neighbors, sorted by 
Euclidean distance from the query point, that are to be used to specify a neighborhood around a query 
point. Having a single parameter used everywhere in the input domain can be problematic if the sampling 
is not uniformly dense, as areas of high-density may favor one direction over another, and areas of low 
density may tend to be overly aggressive and connect distant neighbors. A more suitable option is to use 
an empty region graph that will tend to explore all directions around a point more uniformly. 

To combat this effect RAVEN offers a family of empty region graphs as an alternative. Empty region 
graphs impose a restriction that any valid edge is associated with a specific geometric shape containing no 
data points besides the endpoints of the edge. In this way, edges emanating from a query point tend to fill 
the space of possible directions more evenly. Specifically, RAVEN uses the lune-based β-skeleton and its 
relaxed version made available through the NGL library [23]. The β-skeleton uses an empty region 
defined by a free parameter, β. The required empty region is the intersection of two balls with a diameter 
equal to d*β where β is in the range (0,2] and d is the edge length. In the setting where β ≤ 1, the balls are 
aligned such that the edge is a secant line of both balls. In the setting where beta > 1, each ball is 
anchored to one of the endpoints and its center point is collinear with the potential edge. See Figure 7 for 
an illustration. 

 

(a) (b) (c)

x

y

x

y

x

y



 

 23 

Figure 7: Examples of the empty region specified by various β-skeletons. From left to right, β < 1, β = 1, 
and β > 1. 

Normally, the beta skeleton graph will reject an edge if any point intersects the lune-shaped 
intersection of the balls above, however this property can be relaxed to only reject edges if the 
intersecting point is already a neighbor of either endpoint of the edge in question. To do this 
appropriately, potential edges for a given query point have to be sorted and tested in order of increasing 
length to ensure correctness. 

Once a neighborhood graph is placed on the data, the gradient flow at each point in the dataset can be 
estimated. The estimation is performed by following the steepest descending or ascending edges 
iteratively until a local extremum is encountered. Local extrema are identified by the absence of lower or 
higher valued neighbors. 

Due to the discretization discussed above, possible noise in the input data, or the desired resolution of 
the data, the resulting topology may be over segmented. By utilizing the notion of persistence 
simplification, a hierarchical partitioning can be created whereby smaller features can be merged into 
larger features. The standard setting is shown in Figure 8where each local minimum or maximum is 
associated with a persistence value, the difference in function value between the extremum and its closest 
valued neighboring critical point, generally a saddle point. Due to the discretization all saddles are 
assumed to be simple 1-saddles, that is they lie between either two maxima or two minima. In this way, a 
saddle point and a local extremum can be canceled, and thus, the simplification simulates that flow is 
redirected from this extrema to the other higher persistence extrema on the other side of the saddle point. 

 
Figure 8: An example 2D function illustrating the effect after canceling the local maximum x and the 
circled green saddle point. 

As a result of approximating a saddle for each pair of neighboring minima or maxima, the order 
bywhich extrema are simplified can be modified and still maintain a valid Morse-Smale complex. Due to 
this, other criteria than function value difference can be investigated in order to simplify the domain, such 
as size of the segment, where the smaller segment (fewer points) will merge into its neighboring larger 
segment. Also, total probability of a segment can be used, thus a more refined topology can be generated 
in the high probability regions and smoothing/flattening can be simulated in the areas of lower probability 
where less fidelity is required. Examples of these different simplification strategies are shown in Figure 9. 

Once the data has been decomposed, each partition of the data is locally fit using a local linear 
regression. The linear regression can be weighted to fit the data more closely where the input probability 
is higher. This involves minimizing the least square error of the linear coefficients for each input 
parameter:   

β = 𝑎𝑟𝑔min
!
𝑠 β = (𝑋!𝑊𝑋)!!𝑋!𝑊𝑦 

(a) (b)

x

y

z z



 

 24 

Where β is the set of coefficients, X is the set of input data, W is the set of associated probabilities, 
and y is the associated output data. The entire data set and the known local model associated to each 
partition of the data can be used to determine the quality of the linear regression by computing the 
coefficient of determination (R2): 

𝑅! = 1 −
𝑤!!

!!! (𝑦! − 𝑦!)!

𝑤!!
!!! (𝑦! − 𝑦!)!

 

Where 𝑦! represents the mean of the observed output value, 𝑦! is the true response value and 𝑦! is the 
predicted value. In essence, this equation determines the prediction ability of the regression compared to 
that of a simple mean value predictor. 

 
Figure 9: An example 2D function simplified using (from left): a point count metric where larger 
segments subsume smaller segments, the default persistence simplification metric based on function value 
difference, a probability metric (where each dimension consists of a normal distribution with a mean at 
xi=0.5), and finally the full segmentation with no simplification performed. 

The results of this algorithm can require some exploration of various levels of the hierarchy, and so 
an optional user interface for understanding the results of the topological decomposition and subsequent 
regression results is provided. An example of this interface on a synthetic dataset is provided in Figure 10. 



 

 25 

 
Figure 10: Optional user interface for interactively adjusting parameters and visualizing the effects on the 
sensitivity and fitness of the data. 

The results include scatterplot projections of the data into 2 or 3 dimensions. Also, two standard 
topological summary plots including persistence barcodes (Figure 11 center) and a persistence diagram 
(Figure 11 right) help identify appropriate cutoff points for the simplification setting. The persistence 
plots show the relative persistence values of each extremum-saddle pairing and can identify areas of low 
density that represent a clean separation between signal and noise. A newly developed topology map 
(Figure 11 left) shows how the various extrema are connected via Morse-Smale cells as well as the 
relative persistence value of each extremum.  

 
Figure 11: Persistence-based topological views of the data allow the user to select an appropriate 
simplification level in the topological hierarchy. 

The signed sensitivity coefficients are plotted so that the relative importance of each input parameter 
on the output variable can be compared (Figure 12 center). This view makes it clearly apparent what the 
main drivers for each segment of the domain are by using uniformly scaled rectangles to allow direct 



 

 26 

comparison of the sensitivity of any subset of parameters. In order to better understand the 
trustworthiness of the local linear models, the R2 fitness plot (Figure 12 right) is used to build 
progressively more complex linear models by first using only the most important dimension and then 
adding dimensions in order of decreasing sensitivity magnitude. This is akin to stepwise linear regression. 
In this way, one is able to see at what point adding more dimensions does not increase the fidelity of the 
model. Lastly, this interface is all presented in a linked view fashion. That is, for example, selecting 
particular clusters in the topology map view will update all other views to only show the requested data. 

 

Figure 12: A scatterplot showing a set of partitions in the data (left), the associated sensitivity coefficients 
of each segment in the data (center), and the R2 fitness plot demonstrating the quality of fit when 
performing stepwise regression.  

3.2.2 Morse-Smale Regression ROM 
In order to use the Morse-Smale complex as a predictor, the incoming query data needs to be 

associated with one or more of the partitions and then should be able to report either the most probable 
partition’s prediction or intelligently blend the estimates from each locally constructed linear model. In 
order to do this in a sensible way, RAVEN provides both a kernel density estimator (KDE) and a support 
vector machine (SVM) that can assign weights to each local model for a given query location. With these 
weights, a user can either choose to use the highest weighted model or to blend the models based on their 
weights. 

For the KDE method, a kernel function is used that accepts the distance between a query point and 
one training point. The kernel function has a maximal value at zero and falls off as the distance between 
the two locations increases. This ensures that the models composed of training data closest to the query 
location influence it the most. Thus, the weight of a linear model (𝑤!) is the average of the kernel 
function evaluated for each training data point: 

𝑤! 𝑥 =
𝐾( 𝑥 − 𝑥! !

)!!
!!!

𝑛!
 

Several standard kernel methods are provided, however the examples reported in this report all use 
the Gaussian kernel. The full list of the provided kernel functions is shown in Figure 13. In addition, the 
KDE method provides the user with a bandwidth parameter that allows the user to specify the degree of 
falloff for the kernel function. A smaller bandwidth parameter will create steeper plots in Figure 13, 
whereas a larger bandwidth will stretch the plots along the x-axis. 



 

 27 

  
Figure 13: Kernels available for use in the KDE method. Left column (from top to bottom): uniform, 
Epanechnikov, triweight, Gaussian, logistic, and exponential. Right column (from top to bottom): 
triangular, biweight, tricube, cosine, and Silverman. 

 

 For the SVM version, a one-versus-one support vector classifier is constructed using scikit-learn’s 
implementation of the support vector classifier. The class provided by scikit-learn directly provides a 
function (SVC.predict_proba) for predicting the probability that a query location belongs to a 
particular partition of the data. It is possible to allow the user to tune the SVM, however the results 
reported in this report use the default settings for scikit-learn’s SVM. Results of these different types of 
model prediction are reported in Figure 14.  

 



 

 28 

 
Figure 14: Prediction results using various versions of the Morse-Smale regression ROM. Clockwise 
from top left: The initial training data (colored by decomposed segmentation), the hard cutoff SVM, the 
hard cutoff KDE using a Gaussian kernel, the smooth KDE with a Gaussian kernel, the smooth SVM, and 
the true response being modeled (colored by the true topological decomposition). 

 

 

4. TEST CASES AND RESULTS 
The testing of the data mining algorithms has already been performed with sample datasets (section 

3.1 and 3.2); this section presents the application of the data mining and topology post-processors to real 
physical simulations. 

Section 4.1 applies the topology post-processor to a BISON [21] nuclear fuel simulation where 
RAVEN is used to perturb the parameters to generate an input space for analysis. 

Section 4.2 applies the data mining post-processor to the same dataset as in section 4.1 and a few 
other datasets, which are described in the section. 

 

4.1 Test Cases 
4.1.1 BISON Nuclear Fuel Performance Simulation 

For the testing the data mining algorithms a BISON fuel rodlet performance simulation was 
performed where RAVEN used to perturb the parameters to generate an input space for the analysis.  

The rodlet under consideration is axis-symmetric and composed of ten stacked UO2 pellets and 
surrounded by a zirconium alloy cladding. The BISON mesh used in the simulation is shown in Figure 



 

 29 

15, note that, 10 pellets are simulated as a single, long pellet sandwiched between two insulator pellets. In 
this example, the maximum Von Mises stress occurring in the midplane of the cladding and 12 other 
FOM (shown in Table 2) were calculated over the course of several simulations where three different 
input parameters were modified. Too much stress in the cladding can cause the cladding to crack and 
allow radioactive gas to leak into the plant environment and this is the reason to chose middle plane 
maximum Von Mises stress as explicative FOM. The three parameters under study are the linear power 
scaling factor of the reactor (power_scalef), the grain radius scaling factor of the UO2 fuel pellets 
considered (grainradius_scalef), and the thermal expansion coefficient of the reactor fuel 
(thermal_expansion).  

 
Figure 15: The BISON mesh used in the simulation: smeared pellet stack with hafnium insulator end 
pellets. 

In this simulation, the linear power is ramped up from 0 W/m to 25000 W/m over the first 10000 
seconds of the simulation before leveling off. Note that the power_scalef will augment the final power in 
each simulation. The goal is to attain a better understanding of the contact that occurs when the fuel 
pellets expand to the point of touching the cladding. The stress on the cladding at t=0 is due to a 
compressive force from the water pressure outside of the cladding. As fission occurs, the fuel rod expands 
as it is heated due to thermal expansion and swelling from the release of fission gas within the 
microstructure of the fuel. These same factors cause a force that counteracts the compressive force from 
the external water pressure, therefore the stress in the cladding decreases for a time until these forces 
reach equilibrium. After the equilibrium point, the expansive forces on the cladding begin to dominate, 
thus causing more stress on the cladding as it expands. 

In the above scenario, contact is generally not indicative of a failure state, and is actually expected in 
these types of environments. The described problems arise only when the stress in the cladding becomes 
too high. In this study, RAVEN was used to stochastically sample the three parameters: power_scalef, 



 

 30 

grainradius_scalef, and thermal_expansion of a BISON input file in order to generate a sample set of 
17390 simulations.  

Table 2: Parameters calculated in the Bison fuel analysis (output space) 
No Parameter Description 

1 Max_stress Maximum Stress 

2 Max_vonmises_stress Maximum Von Mises Stress 

3 Max_hoop_stress Maximum Hoop Stress 

4 Avg_clad_temp Average Clad Temperature 

5 Ave_temp_interior Average Interior Temperature 

6 Fis_gas_released Released fission gas 

7 Centerline_temp Fuel Centerline Temperature 

8 Midplane_hoop_stress_clad Maximum Hoop Stress occurring at Clad midplane 

9 midplane_hoop_strain_clad Maximum Hoop Strain occurring at Clad midplane 

10 midplane_hoop_strain_fuel Maximum Hoop Strain occurring at Fuel midplane 

11 Midplane_vonmises_stress Maximum Von Mises Stress occurring at Clad midplane 

12 Rod_input_power Input power per rod 

13 Rod_total_power Total rod power 

 

4.1.2 Station Black-Out Case 
A Boiling Water Reactor (BWR) Station Black-Out (SBO) simulation was performed in [17] using 

RELAP5-3D and RAVEN. The system considered is a generic BWR power plant with a Mark I 
containment. The details of the model (shown in Figure 16) and the accident scenario can be found in 
[17], however it will be shortly mentioned here for completeness: 



 

 31 

 
Figure 16: Schematic of the model used in the SBO Case [17] 

• Reactor Pressure Vessel (RPV) level control systems provide manual/automatic control of the 
RPV water level. It consists of:  

1. Reactor Core Isolation Cooling (RCIC) provides high-pressure injection of water from 
the Condensate Storage Tank (CST) to the RPV.   

2. High Pressure Core Injection (HPCI) is similar to RCIC, but it allows greater water flow 
rates 

• Safety Relief Valves (SRVs) are DC-powered valves that control and limit the RPV pressure. ��� 
• Automatic Depressurization System (ADS) is a separate set of relief valves that are employed in 

order to depressurize the RPV. ��� 
• Cooling water inventory:  

1. CST contains fresh water that can be used to cool the reactor core.   
2. Pressure Suppression Pool (PSP) water contains a large amount of fresh water that is used 

to provide the ultimate heat sink when AC power is lost.   
3. Firewater system can be injected into the RPV when other water injection systems are 

disabled and when RPV is depressurized.   
• Power systems consists of two power grids, emergency diesel generators (DGs) and battery 

systems for the instrumentation and control systems.  



 

 32 

The accident scenario considered is a loss of off-site power (LOOP) followed by loss of the DGs, i.e. 
SBO initiating event: 

• At time t = 0: the following events occur:  
o LOOP condition occurs due to external events (i.e., power grid related)  
o LOOP alarm triggers the following actions:  

§ Operators successfully scrams the reactor  
§ Emergency DGs starts successfully 
§ Core decay heat is removed from the RPV through the RHR system 
§ DC systems are functional  

• SBO condition may occur: due to internal failure, the set of DGs fails, thus removal of decay heat 
is impeded. Reactor operators start the SBO emergency operating procedures and perform:  

o RPV level control using RCIC or HPCI  
o RPV pressure control using SRVs  
o Containment monitoring (both dry well and PSP) ��� 

• Plant operators start recovery operations to bring back on-line the DGs while the recovery of the 
power grid is underway by the grid owner emergency staff ��� 

• Due to the limited life of the battery system and depending on the use of DC power, battery 
power can deplete. When this happens, all remaining control systems are offline causing the 
reactor core to heat until clad failure temperature is reached, i.e., core damage (CD) ��� 

• If DC power is still available and one of these conditions is reached: 
o Failure of both RCIC and HPCI 
o HCTL limits reached 
o Low RPV water level  
���then the reactor operators will activate the ADS system in order to depressurize the RPV ��� 

• Firewater injection: as an emergency action, when RPV pressure is below 100 psi plant staff can 
connect the firewater system to the RPV in order to cool the core and maintain an adequate water 
level. Such task is, however, hard to complete since the physical connection between the 
firewater system and the RPV inlet has to made manually ��� 

• When AC power is recovered, through successful re-start/repair of DGs or off-site power, RHR 
can be now employed to keep the reactor core cool. ��� 

The twelve parameters are sampled in 20000 simulations using Monte Carlo Sampling. These 
parameters are summarized in Table 3. More details on the sampling and simulation strategies can be 
found in [17]. 

The simulations are evaluated in terms of core damage probability and the main focus was on 
performing a limit surface analysis. 

 

Table 3: Summary of the stochastic parameters and their associated distributions 
No. Stochastic Variable* Distribution Type 
1 Failure time of DGs (h) Exponential 
2 Recovery time of DGs (h) Weibull 
3 Battery life (h) Triangular 
4 SRV 1 fails to open (h) Bernoulli 
5 Offsite AC power recovery (h) Lognormal 
6 Clad Fail Temperature (F) Triangular 



 

 33 

7 HPCI fails to run (h) Exponential 
8 RCIC fails to run (h) Exponential 
9 Battery failure time (h) Exponential 
10 Battery recovery time (min) Lognormal 
11 Firewater availability time (min) Lognormal 
12 Fire water flow rate (gpm) Uniform 

* - Parameters related to human operations are in italics 
  

4.2 Applications of Data Mining Post-Processor 
4.2.1 BISON Fuel Simulation 

The data mining post-processor implemented in RAVEN has been tested on a BISON fuel rodlet 
performance simulation. The findings of the data mining postprocessor available in RAVEN are 
discussed in the following paragraphs. 

Figure 17 shows the cluster labels when the k-means algorithm is applied to the full output space and 
the projection of the cluster labels is made on the input space. The cluster labels show that the variation of 
the “power scaling factor” dominates the transition between the clusters, which means that the output 
space is more sensitive to the “power scaling factor” than the other two input parameters.  

 
 

Figure 17: Input space with cluster labels obtained with k-means algorithm applied to output  



 

 34 

When the clustering is applied to the whole output space the clusters show some noise as seen in Figure 
17 and Figure 18, especially it is better visualized in the middle and bottom plots of 

 

Figure 19. The noise is the effect of other parameters with non-negligible importance to the output 
parameters; in this case the “Power Scale Factor” shows much more significant importance compared to 
other parameters.  

For example the noise in the middle and bottom plots of Figure 19 is therefore due to the “grain 
radius scaling factor” which lead the transition yellow to purple. Figure 20 illustrates when a 
dimensionality reduction is applied to the parameters in Figure 18. When the clusters appear to be 
horizontal it indicates not relevance of the parameter toward the FOM used to discriminate the cluster. 

 

Figure 18: Midplane Von Mises Stress vs. Power Scale Factor and Grain Radius Factor: Clustering (k-
means) applied to full output space 



 

 35 

 

Figure 19: Coloring is based on a clustering (k-means) applied to the full output space: Midplane Von 
Mises Stress vs. Power Scale Factor (top), Grain Radius Factor (middle) and Thermal Expansion Factor 
(bottom). 

 

Figure 20: Clustering (k-means) applied to output space and the dimensionality reduction (PCA) applied 
to the 3-plotted parameters in Figure 18 plotted with the cluster labels 

The dataset obtained with the BISON fuel performance simulation has 13 dimensions in the output 
space, the clustering applied to this space seems to give meaningful results. It is also possible to apply 
dimensionality reduction to the output space prior to the clustering analysis in case the data mining 
algorithms are effected by the “curse of dimensionality”, results of such an application applied to BISON 
fuel performance simulation is illustrated in Figure 21 and Figure 22. The output space is reduced to 5 
dimensions before applying the k-means clustering algorithm; the first 3 components are plotted in Figure 
21 with the cluster labels obtained from the 5 dimensional reduced output space.  



 

 36 

 

Figure 21: The first 3 components of the reduced output space 

 

Figure 22: The input space with the cluster labels obtained from the reduced output space 

The input space plotted in Figure 22 shows the cluster labels from the reduced output space, which 
does not show any significant difference from Figure 17, where the cluster labels are obtained from the 
original high dimensional output space. The variation of the “power scaling factor” dominates the 
transition between the clusters, which means that the reduced output space is again more sensitive to the 
“power scaling factor” than the other two input parameters. Even though the data mining process shown 
here in Figure 21 and Figure 22 do not show significant difference when applied to this dataset, it would 
be beneficial if the dataset shows the “curse of dimensionality”.  

4.2.2 BWR SBO Case 
The data mining post-processor implemented in RAVEN has been tested on a BWR SBO scenario 

analysis. The data mining is applied to a dataset without the knowledge of the physical meaning of the 



 

 37 

data in input and output space. The findings of the data mining post-processor available in RAVEN are 
discussed in the following paragraphs. 

Data mining is applied to the 1-dimensional output space; two clusters are identified in the data sets. 
Then, the next process is typically to apply (project) the cluster labels to the input space to identify the 
patterns. However, the large dimensionality of the input space (12D) makes it difficult to visualize the 
input space. The input space dimension can either be reduced to low-dimensions (2D or 3D) to visualize 
or the visualization can be performed only in 2D or 3D. However, this will show noise in the 
visualization, which is illustrated in Figure 23 through Figure 25.  

The cluster labels in Figure 23 through Figure 25 shows almost a horizontal band, which could be 
indicated as that there is no effect from any of the parameters at all. However, this is expected since the 
clad failure temperature is one in the input space and its distribution had a minimum value, which is 1800 
oF in the analysis. The dataset has 19996 points over 12 dimensions, i.e. each dimension has 1666 points. 
The so-called noise in Figure 23 through Figure 25 is effect of other 11 dimensions not shown in the 
figures. 

 
Figure 23: Maximum Clad Temperature as a function of Reactor Power 

 
Figure 24:Maximum Clad temperature as a function of DG recovery time 



 

 38 

 

Figure 25: Maximum Clad Temperature as a function of SRV2 Fail Open time. 

The noise is removed from the dataset by: 

• a covariance analysis is performed with the “BasicStatistics” post-processor to rank the input 
space 

• The cluster labels obtained with the previous cluster analysis is used as a target to train an 
stochastic gradient descent (SGD) Classifier ROM with the 3 most important input 
parameters used as features. 

• 25x25x25 data points on a grid is sampled and applied to already trained SGD Classifier 
ROM. 

The results showed similar clustering without the noise from the other less important input 
parameters. The three most important variables turned out to be: 

• Variable 1: Reactor Power 
• Variable 2: Diesel Generator Recovery Time 
• Variable 3: Safety Release Valve (2) fails to open Time 

 

 



 

 39 

 
Figure 26: The most important 3 input parameters with the cluster labels from output space.  

 
Figure 27: Results of SGD Classifier ROM.  

 

The separate dependencies of the output to the 3 most important input parameters are illustrated in 
Figure 28. The noise due to the other input parameters are removed by training a Support Vector Machine 
(SVM) based Support Vector Regressor (SVR) ROM with using each input parameter separately as the 
single feature and a using the output as the target. Then each parameter is sampled with a grid sampler 
and the trained ROM is used with these sampled values. A complete input that applies such an analysis 
can be found in Appendices. 

The filtering applied to each input variable separately, which smoothens the dependence of the output 
to each variable. The kernel coefficient for ‘rbf’ kernel, and the penalty parameter of the error term in the 
SVR based ROM are equal to 1 which means that the regression “function” will depend less on the 
variability of the data. If one needs to have more dependence on the variability, then these parameters 
should be chosen to be higher values. 



 

 40 

 

Figure 28: The separate dependence of the output variable to the most important 3 input parameters.  

4.3 Application of Topology Post-Processor  
The topology post-processor’s capabilities have been tested on a BISON fuel rodlet performance 

simulation. In the following paragraphs, the findings when using the structured sensitivity analysis 
offered by the topological postprocessor available in RAVEN are explained. 

Figure 29 shows several visualizations of the dataset. The leftmost image is the topology map. The 
red, upward-pointing triangles represent identified local maxima in the dataset, and the blue, downward-
pointing triangles represent the local minima in the dataset. The horizontal positioning of the extrema 
represents each extrema’s persistence value, meaning that extrema on the left can be considered more 
noisy features, and the extrema on the right are the more persistent and significant extrema. For this 
example, the default persistence implementation that is based on output value difference is used. The 
vertical positioning specifies the relative output value, thus local maxima tend toward the top of the plot 
and local minima tend toward the bottom. As one can see, there is a large gap in the horizontal layout of 
the data, which highlights a natural place to start when setting the simplification level. In this example, a 
level in the topological hierarchy is selected that highlights two distinct partitions. These partitions are 
shown in the topology map as Bezier curves connecting a local minimum to a local maximum that 
uniquely identify each Morse-Smale cell in the data. 

The next plot shows the linear coefficients (β) of performing linear fits on each Morse-Smale cell of 
the data. The plot in Figure 29 shows that the power_scalef is by far the most sensitive parameter for this 
problem. . After sorting these dimensions in order of decreasing sensitivity, stepwise regression is 
performed and the coefficients of determination (R2) are plotted in order to better understand the value 
added for each dimension. This is shown in the third plot of Figure 29. One can again see that most of the 
linearity is captured in the power_scalef and little information is gained by incorporating the remaining 
two dimensions. . This information can be used to select an appropriate scatterplot projection, which is 
shown in the right image of Figure 29. 

The projected scatterplot reiterates and elucidates what the other visualizations have told the 
audience. First, the power_scalef is more or less driving the value of the max stress. For lower values of 
the power_scalef the stress is decreasing implying that the simulation is in a pre-contact state, that is the 
stress is decreasing due to the expansive forces counteracting the compressive forces, however once 
entering the yellow segment, a sharp spike in the stress is noted as the fuel has come into contact with the 



 

 41 

cladding. Lastly, the reason for the blue segment’s inferior linear fit is made clear as there is a small 
upward trend followed by a steep downward trend in the stress-power_scalef relationship. In order to 
better capture this portion of the data, the resolution of the simplification should be increased, which is 
investigated in Figure 30. 

 
Figure 29: BISON test case results. Left: the topology map, middle left: the sensitivity values of each 
dimension on each partition of the data, middle right: the fitness values of performing stepwise regression 
where dimensions are added in order of decreasing sensitivity, and right: a 3D scatter plot where 
thermal_expansion is suppressed. 

 
Figure 30: BISON test case results at a more resolved topological decomposition. Left: the topology map, 
middle left: the sensitivity values of each dimension on the most significant partitions of the data, middle 
right: the fitness values of performing stepwise regression where dimensions are added in order of 
decreasing sensitivity for the same partitions, and right: a 3D scatter plot where grainradius_scalef is 
suppressed. 

 For Figure 30, more refined partitions are included in the analysis in order to capture the initial 
upward trend in the data. Note, that in order to capture this segment of the data, several steps down in the 
resolution must be taken. These segments are shown in the left and right images of Figure 30, and notably 
in the right image several of these segments include very few data points and are less useful for analysis. 
For this reason, attention of the middle two images is focused on only the three main trends in the data, 
which includes the yellow partition of Figure 29 (now the blue partition), and the decomposed blue 
segment of Figure 29 (now the magenta and gold partitions). Now, these three partitions are able to fit 
these three partitions much more accurately with linear models. The end result remains the same for each 
of these three main segments, that is, the power_scalef is the most dominant parameter by several orders 
of magnitude, and between the other two, thermal_expansion is slightly more sensitive. 

5. FUTURE DEVELOPMENTS 
The new topology post-processor approximates the Morse-Smale complex given a finite sample set. 

Minor improvements/alternatives can be explored and instantiated that allow for variants of the algorithm 



 

 42 

including variants of the gradient estimation, use of different graph structures, sampling or resampling the 
input data, extracting the topology of ROMs rather than the potentially sparse input data coming from 
computationally expensive simulations. Furthermore, the efficacy of the topology post-processor has been 
demonstrated on low dimensional examples, however the power of this method is its ability to accept 
higher dimensional data that cannot be directly visualized using scatterplot projections.   

Already, the topological capabilities have been extended to be used as a ROM, however further 
extensions can be made by potentially using ascending/descending manifolds to fit local models around 
extrema. As these manifolds are no longer monotonic, a new type of local model would need to be used 
that takes full advantage of the information known about these manifolds (that is, they have a single sink 
or source). In addition, the topological decomposition can be in other parts of RAVEN, such as in the 
adaptive sampling search [19,20,21]. Research into such methods is being performed concurrently with 
the University of Utah. 

The data mining techniques presented in this method are mainly used for the datasets obtained at a 
given time, or the final result of a transient analysis, so far the time dependence is not applicable. The 
algorithms need to be extended to find patterns in time dependent datasets.  

 

6. CONCLUSIONS 
 

In this report, we introduce the implementation of the data mining algorithms in the SciKit-Learn to 
RAVEN, the topology post-processor and the underlying Morse-Smale decomposition.  

The application of data mining algorithms to find and identify the patterns in the large datasets is 
shown in two different physical simulation rather than artificial databases.  

The reduction of the dimensionality and separation of the individual effects of input parameters using 
unsupervised and supervised learning algorithms are powerful tools for visualizing the datasets.  

The topology post-processor and its associated visual interface is a useful technique for intelligently 
decomposing the domain to provide more accurate and localized sensitivity information. This can provide 
a useful first pass at a dataset to help identify what areas of the domain are interesting, and also what 
parameters are most sensitive. It is possible that a particular area of the domain is highly dependent on a 
subset of the parameters, but a separate subspace of the domain has a different set of drivers. This type of 
information will stand out when using the topology post-processor signaling the user to use different 
sampling strategies or to use different ROMs to model different subspaces of the input domain of interest. 

Furthermore, the versatility of the Morse-Smale complex was hinted at by instantiating it in a post-
processor, and also as a ROM. As mentioned in Section 5, the Morse-Smale complex can also be used to 
augment certain sampling strategies. As such, the addition of the Morse-Smale complex into the RAVEN 
code provides the potential for several new areas of exploration and is a good supplement to the more 
traditional data mining techniques provided by scikit-learn. 

These capabilities will need to be extended to time dependent analysis to be capable to appreciate 
how different parameters change their impact depending on the evolution of the transient considered. The 
Morse-Smale based topological analysis will need to be extended to deal with intrinsically stochastic 
systems. 

 

 

 



 

 43 

7. REFERENCES 
1. Rabiti, C., A. Alfonsi, D. Mandelli, J. Cogliati, and R. Kinoshita, “RAVEN, a New Software for 

Dynamic Risk Analysis,” PSAM 12 Probabilistic Safety Assessment and Management, Honolulu, 
Hawaii, June 2014.   

2. Rabiti, C., A. Alfonsi, D. Mandelli, J. Cogliati, R. Martinueau, and C. Smith, Deployment and 
Overview of RAVEN Capabilities for a Probabilistic Risk Assessment Demo for a PWR Station 
Blackout, INL/EXT-13-29510, Idaho National Laboratory, 2013.   

3. Rabiti, C., A. Alfonsi, D. Mandelli, J. Cogliati, R. Kinoshita, and S. Sen, RAVEN User Manual, 
INL/EXT-15-34123, Idaho National Laboratory, 2015.   

4. Alfonsi, A., C. Rabiti, D. Mandelli, J. Cogliati, R. Kinoshita, and A. Naviglio, “RAVEN and dynamic 
probabilistic risk assessment: Software overview,” in Proceedings of ESREL European Safety and 
Reliability Conference, 2014.   

5. Alfonsi, A., C. Rabiti, D. Mandelli, J. Cogliati, and R. Kinoshita, “Raven as a tool for dynamic 
probabilistic risk assessment: Software overview,” in Proceedings of M&C2013 International Topical 
Meeting on Mathematics and Computation, CD-ROM, American Nuclear Society, LaGrange Park, 
IL, 2013.   

6. Rabiti, C., D. Mandelli, A. Alfonsi, J. Cogliati, and B. Kinoshita, “Mathematical framework for the 
analysis of dynamic stochastic systems with the raven code,” in Proceedings of International 
Conference of Mathematics and Computational Methods Applied to Nuclear Science and Engineering 
(M&C 2013), Sun Valley, ID, pp. 320–332, 2013. 

7. Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011. 

8. Habermann, C., and F. Kindermann, “Multidimensional Spline Interpolation: Theory and 
Applications,” Computational Economics, Volume 30, Issue 2, pp. 153-169. 

9. Gordon, W.J., and J.A.Wixom, “Shepard’s Method of Metric Interpolation to Bivariate and 
Multivariate Interpolation,” In Mathematics and Computation, Volume 32, Issue 141, pp. 253-264, 
1978. 

10.  Andrea Alfonsi, Cristian Rabiti, Diego Mandelli, Joshua Cogliati, Sonat Sen, Curtis 
Smith,“Improving Limit Surface Search Algorithms in RAVEN Using Acceleration Schemes”, 
INL/EXT-15-36100, 2015     

11. Rabiti, C., A. Alfonsi, D. Mandelli, J. Cogliati, and B. Kinoshita, Advanced Probabilistic Risk 
Analysis Using RAVEN and RELAP-7, INL/EXT-14-32491, Idaho National Laboratory, 2014. 

12. Rabiti, C., P. Talbot, A. Alfonsi, D. Mandelli, and J. Cogliati, Implementation of Stochastic 
Polynomials Approach in the RAVEN Code, INL/EXT-13-30611, Idaho National Laboratory, 2013. 

13. Alfonsi, A., C. Rabiti, D. Mandelli, J. Cogliati, R. Kinoshita, and A. Naviglio, “Dynamic event tree 
analysis through Raven,” in Proceedings of ANS PSA 2013 International Topical Meeting on 
Probabilistic Safety Assessment and Analysis, 2013. 



 

 44 

14. RELAP5 Code Development Team, RELAP5-3D Code Manual, Idaho National Laboratory, 2012. 

15. Gaston, D., C. Newman, G. Hansen, and D. Lebrun-Grandi, “MOOSE: A parallel computational 
framework for coupled systems of nonlinear equations,” Nuclear Engineering Design, 239, 
pp. 1768-1778, 2009. 

16. Alfonsi, A., C. Rabiti, A. S. Epiney, Y. Wang, and J. Cogliati, “PHISICS Toolkit: Multi-Reactor 
Transmutation Analysis Utility–MRTAU,” in Proceedings of PHYSOR 2012 “Advances in Reactor 
Physics Linking Research, Industry, and Education,” Knoxville, TN, April 15-20, 2012. 

17. Mandelli, D., C. Smith, Z. Ma, T. Riley, J. Nielsen, A. Alfonsi, C. Rabiti, J. Cogliati, Risk-Informed 
Safety Margin Characterization Methods Development Work, INL/EXT-14-33191, Idaho National 
Laboratory, 2014. 

18. Gerber, S. and Potter, K. “Data analysis with the Morse-Smale complex: The MSR package for R.” 
Journal of Statistical Software, 50(2):1–22, 7 2012.   

19. Maljovec, D., Wang, B., Kupresanin, A., Johannesson, G., Pascucci, V., and Bremer, P.-T., 
“Adaptive Sampling with Topological Scores,” International Journal for Uncertainty Quantification 
(IJUQ), 3(2), pages 119-141, 2013. 

20. Maljovec, D., Wang, B., Mandelli, D., Bremer, P.-T., and Pascucci, V. “Adaptive Sampling 
Algorithms for Probabilistic Risk Assessment of Nuclear Simulations,” International Topical Meeting 
on Probabilistic Safety Assessment and Analysis (PSA), 2013. 

21. Maljovec, D., Wang, B., Moeller, J., and Pascucci, V. “Topology-Based Active Learning.” SCI 
Technical Report UUSCI-2014-00, 2014. 

22. Hales, J., Novascone, S., Pastore G., Perez D., Spencer B., and Williamson, R. BISON Theory 
Manual: The Equations Behind Nuclear Fuel Analysis, 2013. ��� 

23. C. Correa and P. Lindstrom. Towards robust topology of sparsely sam- ���pled data. Visualization and 
Computer Graphics, IEEE Transactions on, ���17(12):1852–1861, Dec 2011. ��� 

  



 

 45 

Appendix A: Sample Inputs 
<?xml version="1.0" encoding="UTF-8"?> 
<Simulation verbosity='debug'> 
  <RunInfo> 
    <WorkingDir>SBODataMining</WorkingDir> 
    
<Sequence>read_in_hdf5,pp0,pp,trainRom,romMC,trainRom1,rom1MC,pp1,trainRom2,rom2MC,pp2,trainRom3,
rom3MC,pp3,outputAll</Sequence> 
    <batchSize>100</batchSize> 
  </RunInfo> 
  <Files> 
      <Input name="sboDataPointSet">./data20000.csv</Input> 
      <Input name="outputBS.csv">./outputBS.csv</Input> 
  </Files> 
  <Steps> 
    <IOStep name='read_in_hdf5' verbosity='debug'> 
   <Input    class = 'Files'             type = ''              >sboDataPointSet</Input> 
        <Output   class = 'DataObjects'       type = 'PointSet'      >sboData</Output> 
     </IOStep> 
    <PostProcess name='pp0' pauseAtEnd = 'True'> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >sboData</Input> 
        <Model    class = 'Models'            type = 'PostProcessor' >BasicStatistics</Model> 
        <Output   class = 'Files'             type = ""              >outputBS.csv</Output> 
    </PostProcess> 
    <IOStep name='LSplot' pauseAtEnd = 'True'> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >sboData</Input> 
        <Output   class = 'OutStreamManager'  type = 'Plot'          >Plot2LS</Output> 
    </IOStep> 
    <RomTrainer name='trainRom1' pauseAtEnd = 'True'> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >sboData</Input> 
        <Output   class = 'Models'            type = "ROM"           >PowerSVR</Output> 
    </RomTrainer> 
    <MultiRun name="rom1MC" re-seeding="200286" sleepTime='1E-3'> 
        <Input   class="DataObjects"          type = "Point"         >romData</Input> 
        <Model   class="Models"               type = "ROM"           >PowerSVR</Model> 
        <Sampler class="Samplers"             type = "Grid"          >RAVENgrid</Sampler> 
        <Output  class="DataObjects"          type = "PointSet"      >rom1OutputData</Output> 
    </MultiRun> 
    <PostProcess name='pp1' pauseAtEnd = 'True'> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >rom1OutputData</Input> 
        <Model    class = 'Models'            type = 'PostProcessor' >ClusteringPP1</Model> 
        <Output   class = 'OutStreamManager'  type = 'Plot'          >Plot2Power</Output> 
    </PostProcess> 
    <RomTrainer name='trainRom2' pauseAtEnd = 'True'> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >sboData</Input> 
        <Output   class = 'Models'            type = "ROM"           >RecoveryTimeSVR</Output> 
    </RomTrainer> 
    <MultiRun name="rom2MC" re-seeding="200286" sleepTime='1E-3'> 
        <Input   class="DataObjects"          type = "Point"         >romData</Input> 
        <Model   class="Models"               type = "ROM"           >RecoveryTimeSVR</Model> 
        <Sampler class="Samplers"             type = "Grid"          >RAVENgrid</Sampler> 
        <Output  class="DataObjects"          type = "PointSet"      >rom2OutputData</Output> 
    </MultiRun> 
    <PostProcess name='pp2' pauseAtEnd = 'True'> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >rom2OutputData</Input> 
        <Model    class = 'Models'            type = 'PostProcessor' >ClusteringPP2</Model> 
        <Output   class = 'OutStreamManager'  type = 'Plot'          >Plot2RecoveryTime</Output> 
    </PostProcess> 
    <RomTrainer name='trainRom3' pauseAtEnd = 'True'> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >sboData</Input> 
        <Output   class = 'Models'            type = "ROM"           >StuckOpenTimeSVR</Output> 
    </RomTrainer> 
    <MultiRun name="rom3MC" re-seeding="200286" sleepTime='1E-3'> 
        <Input   class="DataObjects"          type = "Point"         >romData</Input> 
        <Model   class="Models"               type = "ROM"           >StuckOpenTimeSVR</Model> 
        <Sampler class="Samplers"             type = "Grid"          >RAVENgrid</Sampler> 
        <Output  class="DataObjects"          type = "PointSet"      >rom3OutputData</Output> 



 

 46 

    </MultiRun> 
    <PostProcess name='pp3' pauseAtEnd = 'True'> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >rom3OutputData</Input> 
        <Model    class = 'Models'            type = 'PostProcessor' >ClusteringPP3</Model> 
        <Output   class = 'OutStreamManager'  type = 'Plot'          >Plot2StuckOpenTime</Output> 
    </PostProcess> 
    <PostProcess name='pp' pauseAtEnd = 'True'> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >sboData</Input> 
        <Model    class = 'Models'            type = 'PostProcessor' >ClusteringPP4</Model> 
        <Output   class = 'OutStreamManager'  type = 'Plot'          >Plot2</Output> 
    </PostProcess> 
    <RomTrainer name='trainRom' pauseAtEnd = 'True'> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >sboData</Input> 
        <Output   class = 'Models'            type = "ROM"           >SGDClassifier</Output> 
    </RomTrainer> 
    <MultiRun name="romMC" re-seeding="200286" sleepTime='1E-3'> 
        <Input   class="DataObjects"          type = "Point"         >romData</Input> 
        <Model   class="Models"               type = "ROM"           >SGDClassifier</Model> 
        <Sampler class="Samplers"             type = "Grid"          >RAVENgrid</Sampler> 
        <Output  class="DataObjects"          type = "PointSet"      >romOutputData</Output> 
    </MultiRun> 
    <IOStep name='output' pauseAtEnd = 'True'> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >romOutputData</Input> 
        <Output   class = 'OutStreamManager'  type = 'Plot'          >Plot2SGD</Output> 
    </IOStep> 
    <IOStep name='outputAll' pauseAtEnd = 'True'> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >sboData</Input> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >romOutputData</Input> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >rom1OutputData</Input> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >rom2OutputData</Input> 
        <Input    class = 'DataObjects'       type = 'PointSet'      >rom3OutputData</Input> 
        <Output   class = 'OutStreamManager'  type = 'Plot'          >PlotAll</Output> 
    </IOStep> 
  </Steps> 
  <Distributions> 
      <Uniform name="FailureTimeDGDist"> 
          <lowerBound>1.0E0</lowerBound> 
          <upperBound>3.0E4</upperBound> 
      </Uniform> 
      <Uniform name="RecoveryTimeDGdist"> 
          <lowerBound>0.0E0</lowerBound> 
          <upperBound>4.4E4</upperBound> 
      </Uniform> 
      <Uniform name="OFFsitePowerRecoveryTimeDist"> 
          <lowerBound>3.2E0</lowerBound> 
          <upperBound>4.4E4</upperBound> 
      </Uniform> 
      <Uniform name="SRV1stuckOpenTimeDist"> 
          <lowerBound>6.0E0</lowerBound> 
          <upperBound>4.4E4</upperBound> 
      </Uniform> 
      <Uniform name="SRV2stuckOpenTimeDist"> 
          <lowerBound>0.0E0</lowerBound> 
          <upperBound>1.5E4</upperBound> 
      </Uniform> 
      <Uniform name="cladFailureTemperatureDist"> 
          <lowerBound>1.8E3</lowerBound> 
          <upperBound>2.6E3</upperBound> 
      </Uniform> 
      <Uniform name="HPCIFailToRunTimeDist"> 
          <lowerBound>2.9E0</lowerBound> 
          <upperBound>2.9E4</upperBound> 
      </Uniform> 
      <Uniform name="RCICFailToRunTimeDist"> 
          <lowerBound>2.0E0</lowerBound> 
          <upperBound>4.3E4</upperBound> 
      </Uniform> 
      <Uniform name="ReactorPowerDist"> 
          <lowerBound>1.0E1</lowerBound> 



 

 47 

          <upperBound>4.4E4</upperBound> 
      </Uniform> 
      <Uniform name="ADSactivationTimeDelayDist"> 
          <lowerBound>8.5E-1</lowerBound> 
          <upperBound>7.2E3</upperBound> 
      </Uniform> 
      <Uniform name="firewaterTimeDist"> 
          <lowerBound>3.7E-1</lowerBound> 
          <upperBound>2.9E4</upperBound> 
      </Uniform> 
      <Uniform name="ExtendedECCSoperation"> 
          <lowerBound>1.0E3</lowerBound> 
          <upperBound>2.6E3</upperBound> 
      </Uniform> 
  </Distributions> 
  <Samplers> 
      <MonteCarlo name="RAVENmc3"> 
          <sampler_init> 
              <limit>20000</limit> 
          </sampler_init> 
          <variable name="RecoveryTimeDG"> 
              <distribution>RecoveryTimeDGdist</distribution> 
          </variable> 
          <variable name="ReactorPower"> 
              <distribution>ReactorPowerDist</distribution> 
          </variable> 
          <variable name="SRV2stuckOpenTime"> 
              <distribution>SRV2stuckOpenTimeDist</distribution> 
          </variable> 
      </MonteCarlo> 
      <Grid name="RAVENgrid"> 
          <variable name="RecoveryTimeDG"> 
              <distribution>RecoveryTimeDGdist</distribution> 
              <grid type='value' construction='equal' steps='25'>0 4.4E4</grid> 
          </variable> 
          <variable name="ReactorPower"> 
              <distribution>ReactorPowerDist</distribution> 
              <grid type='value' construction='equal' steps='25'>0 4.4E4</grid> 
          </variable> 
          <variable name="SRV2stuckOpenTime"> 
              <distribution>SRV2stuckOpenTimeDist</distribution> 
              <grid type='value' construction='equal' steps='25'>0 1.45E4</grid> 
          </variable> 
      </Grid> 
  </Samplers> 
  <DataObjects> 
      <PointSet name='sboData'> 
          
<Input>FailureTimeDG,RecoveryTimeDG,OFFsitePowerRecoveryTime,SRV1stuckOpenTime,SRV2stuckOpenTime,
cladFailureTemperature,HPCIFailToRunTime,RCICFailToRunTime,ReactorPower,ADSactivationTimeDelay,fi
rewaterTime,ExtendedECCSoperation</Input> 
          <Output>maxCladTemp,outcome</Output> 
      </PointSet> 
      <PointSet name='rom1OutputData'> 
          <Input>RecoveryTimeDG,SRV2stuckOpenTime,ReactorPower</Input> 
          <Output>maxCladTemp</Output> 
      </PointSet> 
      <PointSet name='rom2OutputData'> 
          <Input>RecoveryTimeDG,SRV2stuckOpenTime,ReactorPower</Input> 
          <Output>maxCladTemp</Output> 
      </PointSet> 
      <PointSet name='rom3OutputData'> 
          <Input>RecoveryTimeDG,SRV2stuckOpenTime,ReactorPower</Input> 
          <Output>maxCladTemp</Output> 
      </PointSet> 
      <PointSet name='romData'> 
          <Input>RecoveryTimeDG,SRV2stuckOpenTime,ReactorPower</Input> 
          <Output>OutputPlaceHolder</Output> 
      </PointSet> 



 

 48 

      <PointSet name='romOutputData'> 
          <Input>RecoveryTimeDG,SRV2stuckOpenTime,ReactorPower</Input> 
          <Output>maxCladTemp,labels</Output> 
      </PointSet> 
  </DataObjects> 
 
  <Models> 
      <ROM name='PowerSVR' subType='SciKitLearn'> 
          <SKLtype>svm|SVR</SKLtype> 
          <Features>ReactorPower</Features> 
          <Target>maxCladTemp</Target> 
      </ROM> 
      <ROM name='RecoveryTimeSVR' subType='SciKitLearn'> 
          <SKLtype>svm|SVR</SKLtype> 
          <Features>RecoveryTimeDG</Features> 
          <Target>maxCladTemp</Target> 
      </ROM> 
      <ROM name='StuckOpenTimeSVR' subType='SciKitLearn'> 
          <SKLtype>svm|SVR</SKLtype> 
          <Features>SRV2stuckOpenTime</Features> 
          <Target>maxCladTemp</Target> 
      </ROM> 
      <ROM name='SGDClassifier' subType='SciKitLearn'> 
          <SKLtype>linear_model|SGDClassifier</SKLtype> 
          <Features>ReactorPower,RecoveryTimeDG,SRV2stuckOpenTime</Features> 
          <Target>labels</Target> 
      </ROM> 
      <PostProcessor name="BasicStatistics" subType="BasicStatistics" verbosity="debug"> 
          <what>all</what> 
          
<parameters>FailureTimeDG,RecoveryTimeDG,OFFsitePowerRecoveryTime,SRV1stuckOpenTime,SRV2stuckOpen
Time,cladFailureTemperature,HPCIFailToRunTime,RCICFailToRunTime,ReactorPower,ADSactivationTimeDel
ay,firewaterTime,ExtendedECCSoperation,maxCladTemp</parameters> 
      </PostProcessor> 
      <PostProcessor name='ClusteringPP1' subType='DataMiningPostProcessor' verbosity = 'quiet'> 
          <KDD lib='SciKitLearn'> 
              <Features>maxCladTemp</Features> 
              <SKLtype>cluster|MiniBatchKMeans</SKLtype> 
              <n_clusters>2</n_clusters> 
              <tol>0.0001</tol> 
              <init>random</init> 
          </KDD> 
          <DataObject    class = 'DataObjects' type = 'PointSet'>rom1OutputData</DataObject> 
      </PostProcessor> 
      <PostProcessor name='ClusteringPP2' subType='DataMiningPostProcessor' verbosity = 'quiet'> 
          <KDD lib='SciKitLearn'> 
              <Features>maxCladTemp</Features> 
              <SKLtype>cluster|MiniBatchKMeans</SKLtype> 
              <n_clusters>2</n_clusters> 
              <tol>0.0001</tol> 
              <init>random</init> 
          </KDD> 
          <DataObject    class = 'DataObjects' type = 'PointSet'>rom2OutputData</DataObject> 
      </PostProcessor> 
      <PostProcessor name='ClusteringPP3' subType='DataMiningPostProcessor' verbosity = 'quiet'> 
          <KDD lib='SciKitLearn'> 
              <Features>maxCladTemp</Features> 
              <SKLtype>cluster|MiniBatchKMeans</SKLtype> 
              <n_clusters>2</n_clusters> 
              <tol>0.0001</tol> 
              <init>random</init> 
          </KDD> 
          <DataObject    class = 'DataObjects' type = 'PointSet'>rom3OutputData</DataObject> 
      </PostProcessor> 
      <PostProcessor name='ClusteringPP4' subType='DataMiningPostProcessor' verbosity = 'quiet'> 
          <KDD lib='SciKitLearn'> 
              <Features>outcome</Features> 
              <SKLtype>cluster|MiniBatchKMeans</SKLtype> 
              <n_clusters>2</n_clusters> 



 

 49 

              <tol>0.0001</tol> 
              <init>random</init> 
          </KDD> 
          <DataObject    class = 'DataObjects' type = 'PointSet'>sboData</DataObject> 
      </PostProcessor> 
  </Models> 
  <OutStreamManager>  
      <Print name = 'cluster_dmp'> 
          <type>csv</type> 
          <source>romOutputData</source> 
      </Print> 
      <Plot dim="3" name="Plot2" overwrite="false" verbosity="debug"> 
          <plotSettings> 
              <plot> 
                  <type>dataMining</type> 
                  <SKLtype>cluster</SKLtype> 
                  <x>sboData|Input|ReactorPower</x> 
                  <y>sboData|Input|RecoveryTimeDG</y> 
                  <z>sboData|Input|SRV2stuckOpenTime</z> 
                  <clusterLabels>sboData|Output|labels</clusterLabels> 
                  <kwargs> 
                      <noClusters>2</noClusters> 
      <edgecolor>None</edgecolor> 
                  </kwargs> 
              </plot> 
              <xlabel>Variable1</xlabel> 
              <ylabel>Variable2</ylabel> 
              <zlabel>Variable3</zlabel> 
          </plotSettings> 
          <actions> 
              <how>screen</how> 
              <camera> 
                  <elevation>9</elevation> 
                  <azimuth>37</azimuth> 
              </camera> 
          </actions> 
      </Plot> 
      <Plot dim="2" name="Plot2Power" overwrite="false" verbosity="debug"> 
          <plotSettings> 
              <plot> 
                  <type>dataMining</type> 
                  <SKLtype>cluster</SKLtype> 
                  <x>rom1OutputData|Input|ReactorPower</x> 
                  <y>rom1OutputData|Output|maxCladTemp</y> 
                  <clusterLabels>rom1OutputData|Output|labels</clusterLabels> 
                  <kwargs> 
                      <noClusters>2</noClusters> 
      <edgecolor>None</edgecolor> 
                  </kwargs> 
              </plot> 
              <xlabel>Reactor Power</xlabel> 
              <ylabel>maxCladTemp</ylabel> 
          </plotSettings> 
          <actions> 
              <how>screen</how> 
          </actions> 
      </Plot> 
      <Plot dim="2" name="Plot2RecoveryTime" overwrite="false" verbosity="debug"> 
          <plotSettings> 
              <plot> 
                  <type>dataMining</type> 
                  <SKLtype>cluster</SKLtype> 
                  <x>rom2OutputData|Input|RecoveryTimeDG</x> 
                  <y>rom2OutputData|Output|maxCladTemp</y> 
       <clusterLabels>rom2OutputData|Output|labels</clusterLabels> 
                  <kwargs> 
                      <noClusters>2</noClusters> 
                      <edgecolor>None</edgecolor> 
                  </kwargs> 



 

 50 

              </plot> 
              <xlabel>Recovery Time DG</xlabel> 
              <ylabel>maxCladTemp</ylabel> 
          </plotSettings> 
          <actions> 
              <how>screen</how> 
          </actions> 
      </Plot> 
      <Plot dim="2" name="Plot2StuckOpenTime" overwrite="false" verbosity="debug"> 
          <plotSettings> 
              <plot> 
                  <type>dataMining</type> 
                  <SKLtype>cluster</SKLtype> 
                  <x>rom3OutputData|Input|SRV2stuckOpenTime</x> 
                  <y>rom3OutputData|Output|maxCladTemp</y> 
                  <clusterLabels>rom3OutputData|Output|labels</clusterLabels> 
                  <kwargs> 
                      <noClusters>2</noClusters> 
      <edgecolor>None</edgecolor> 
                  </kwargs> 
              </plot> 
              <xlabel>SRV2 Stuck Open Time</xlabel> 
              <ylabel>maxCladTemp</ylabel> 
          </plotSettings> 
          <actions> 
              <how>screen</how> 
          </actions> 
      </Plot> 
      <Plot dim="3" name="Plot2SGD" overwrite="false" verbosity="debug"> 
          <plotSettings> 
              <plot> 
                  <type>dataMining</type> 
                  <SKLtype>cluster</SKLtype> 
                  <x>romOutputData|Input|ReactorPower</x> 
                  <y>romOutputData|Input|RecoveryTimeDG</y> 
                  <z>romOutputData|Input|SRV2stuckOpenTime</z> 
                  <clusterLabels>romOutputData|Output|labels</clusterLabels> 
                  <kwargs> 
                      <noClusters>2</noClusters> 
      <edgecolor>None</edgecolor> 
                  </kwargs> 
              </plot> 
              <xlabel>Variable1</xlabel> 
              <ylabel>Variable2</ylabel> 
              <zlabel>Variable3</zlabel> 
          </plotSettings> 
          <actions> 
              <how>screen</how> 
          </actions> 
      </Plot> 
      <Plot dim="3" name="Plot2LS" overwrite="false" verbosity="debug"> 
          <plotSettings> 
              <plot> 
                  <type>scatter</type> 
                  <x>sboData|Input|ReactorPower</x> 
                  <y>sboData|Input|RecoveryTimeDG</y> 
                  <z>sboData|Input|SRV2stuckOpenTime</z> 
                  <colorMap>sboData|Output|outcome</colorMap> 
                  <cmap>summer</cmap> 
                  <kwargs> 
                      <edgecolor>None</edgecolor> 
                      <camera> 
                          <elevation>9</elevation> 
                          <azimuth>37</azimuth> 
                      </camera> 
                  </kwargs> 
              </plot> 
              <xlabel>Variable1</xlabel> 
              <ylabel>Variable2</ylabel> 



 

 51 

              <zlabel>Variable3</zlabel> 
          </plotSettings> 
          <actions> 
              <how>screen</how> 
              <camera> 
                  <elevation>9</elevation> 
                  <azimuth>37</azimuth> 
              </camera> 
          </actions> 
      </Plot> 
      <Plot dim="2" name="PlotAll" overwrite="false" verbosity="debug"> 
          <plotSettings> 
              <gridSpace>5 1</gridSpace> 
              <plot> 
                  <type>dataMining</type> 
                  <SKLtype>cluster</SKLtype> 
                  <x>rom1OutputData|Input|ReactorPower</x> 
                  <y>rom1OutputData|Output|maxCladTemp</y> 
                  <xlabel>Reactor Power</xlabel> 
                  <ylabel>maxCladTemp</ylabel> 
                  <gridLocation> 
                      <x>0</x> 
                      <y>0 1</y> 
                  </gridLocation> 
                  <clusterLabels>rom1OutputData|Output|labels</clusterLabels> 
                  <kwargs> 
                      <noClusters>2</noClusters> 
      <edgecolor>None</edgecolor> 
                  </kwargs> 
              </plot> 
              <plot> 
                  <type>dataMining</type> 
                  <SKLtype>cluster</SKLtype> 
                  <x>rom2OutputData|Input|RecoveryTimeDG</x> 
                  <y>rom2OutputData|Output|maxCladTemp</y> 
                  <xlabel>Recovery Time DG</xlabel> 
                  <ylabel>maxCladTemp</ylabel> 
                  <gridLocation> 
                      <x>2</x> 
                      <y>0 1</y> 
                  </gridLocation> 
                  <clusterLabels>rom2OutputData|Output|labels</clusterLabels> 
                  <kwargs> 
                      <noClusters>2</noClusters> 
      <edgecolor>None</edgecolor> 
                  </kwargs> 
              </plot> 
              <plot> 
                  <type>dataMining</type> 
                  <SKLtype>cluster</SKLtype> 
                  <x>rom3OutputData|Input|SRV2stuckOpenTime</x> 
                  <y>rom3OutputData|Output|maxCladTemp</y> 
                  <xlabel>SRV2 Stuck Open Time</xlabel> 
                  <ylabel>maxCladTemp</ylabel> 
                  <gridLocation> 
                      <x>4</x> 
                      <y>0 1</y> 
                  </gridLocation> 
                  <clusterLabels>rom3OutputData|Output|labels</clusterLabels> 
                  <kwargs> 
                      <noClusters>2</noClusters> 
      <edgecolor>None</edgecolor> 
                  </kwargs> 
              </plot> 
          </plotSettings> 
          <actions> 
              <how>png</how> 
          </actions> 
      </Plot> 



 

 52 

  </OutStreamManager> 
</Simulation> 

 

Appendix B: User Manual 
7.1 TopologicalDecomposition 

The TopologicalDecomposition post-processor will compute an approximated hierarchical Morse-
Smale complex and perform linear regression on each component. 

In order to use the TopologicalDecomposition post-processor, the user needs to set the attribute 
subType: 

<PostProcessor subType=’TopologicalDecomposition’>. The following is a list of acceptable sub-
nodes: 

• <graph> , string, optional field, specifies the type of neighborhood graph used in the 
algorithm, available options are:  

– beta skeleton  
– relaxed beta skeleton  
– approximate knn  

Default: beta skeleton 
• <gradient>, string, optional field, specifies the method used for estimating the gradient, 

available options are:  
– steepest  

Default: steepest 
• <beta>, float in the range: (0,2], optional field, is only used when the <graph> is set to beta 

skeleton or relaxed beta skeleton.  
Default: 1.0  

• <knn>, integer, optional field, is the number of neighbors when using the ’approximate 
knn’ for the <graph> sub-node and used to speed up the computation of other graphs by 
using the approximate knn graph as a starting point for pruning. -1 means use a fully 
connected graph.  
Default: -1  

• <weighted>, boolean, optional, a flag that specifies whether the regression models should be 
probability weighted.  
Default: False  

• <persistence>, string, optional field, specifies how to define the hierarchical simplification 
by assigning a value to each local minimum and maximum according to the one of the 
strategy options below:  

– difference - The function value difference between the extremum and its closest-
valued neighboring saddle.  

– probability - The probability integral computed as the sum of the probability of 
each point in a cluster divided by the count of the cluster.  

– count - The count of points that flow to or from the extremum. 
Default: difference 



 

 53 

 

• <simplification>, float, optional field, specifies the amount of noise reduction to apply 
before returning labels.  
Default: 0  

• <parameters>, comma separated string, required field, lists the parameters defining the 
input space.  

• <response>, string, required field, is a single variable name defining the scalar output space.  

7.2 Data Mining Post Processor 

In order to use the DataMining post-processor, the user needs to set the attribute subType: 
<PostProcessor subType= ’DataMiningPostProcessor’>. The following is a list of acceptable sub-
nodes:   

• <KDD> string,required field, the subnodes specifies the necessary information for the 
algorithm to be used in the postprocessor. the <KDD> has the required attribute: lib, the 
name of the library the algorithm belongs to. Current algorithms applied in the KDD model is 
based on SciKit-Learn library. Thus currently there is only one library:   

– ’SciKitLearn’  
• AssemblerObjectsTheseobjectsareeitherrequiredoroptionaldependingonthefunctionalityofthed

ataMin- ing PostProcessor. The objects must be listed with a rigorous syntax that, except for 
the xml node tag, is com- mon among all the objects. Each of these nodes must contain 2 
attributes that are used to map those within the simulation framework:  

– class, required string attribute, is the main “class” of the listed object. For 
example, it can be “DataObjects,” “Models,” etc.   

– type, required string attribute, is the object identifier or sub-type. For example, it 
can be “PointSet,” “ROM,” etc.   

The DataMining post-processor requires or optionally accepts the following objects’ types: 

 – <DataObject>,string, required field, body of this xml node must contain the name of a DataObject 
 defined in the <DataObjects> block.  

The algorithm for the dataMining is chosen by the subnode <SKLType> under the parent node 
<KDD>. The data that are used in the training of the DataMining postprocessor are supplied with 
subnode <Features>  in the parent node <KDD>.   

• <SKLtype>, vertical bar (|) separated string, required field, contains a string that represents 
the data mining algorithm to be used. As mentioned, its format is:  

 
<SKLtype>mainSKLclass|algorithm</SKLtype>  

 
where the first word (before the “|” symbol) represents the main class of algorithms, and the 
second word (after the “|” symbol) represents the specific algorithm.   

• <Features>, string, required field, defines the data to be used for training the data mining 
algorithm. It can be:  

– the name of the variable in the defined dataObject entity  



 

 54 

– the location (i.e. input or output). In this case the data mining is applied to all the 
variables in the defined space.  

The <KDD> node can have either optional or required subnodes depending on the dataMining 
algorithm used. The possible subnodes will be described seperately for each algorithm below. 

All the available algorithms are described in the following sections. 

7.2.1 Gaussian mixture models  

A Gaussian mixture model is a probabilistic model that assumes all the data points are generated from 
a mixture of a finite number of Gaussian distributions with unknown parameters.   

In order to use the Gaussian Mixture Model, the user needs to set the sub-node: 

<SKLtype>mixture|GMM</SKLtype>. 

In addition to this XML node, several others are available: 

• <n_components>, integer, optional field, Number of mixture components.  
Default: 1  

• <covariance_type>, string, optional field, describes the type of covariance parameters to use. 
Must be one of ‘spherical’, ‘tied’, ‘diag’, ‘full’.  
Default: diag  

• <random_state>, integer seed or random number generator instance, optional field, A 
random number generator instance  
Default: 0 or None  

• <min_covar>, float, optional field, Floor on the diagonal of the covariance matrix to prevent 
overfitting.  
Default: 1e-3.  

• <thresh>, float, optional field, convergence threshold.  
Default: 0.01  

• <n_iter>, integer, optional field, Number of EM iterations to perform.  
Default: 100  

• <n_init>, integer, optional field, Number of initializations to perform. the best results is kept.  
Default: 1  

• <params>, string, optional field, Controls which parameters are updated in the training 
process. Can contain any combination of ‘w’ for weights, ‘m’ for means, and ‘c’ for covars.  
Default: ‘wmc’  

• <init_params>, string, optional field, Controls which parameters are updated in the 
initialization process. Can contain any combination of ‘w’ for weights, ‘m’ for means, and ‘c’ 
for covars.  
Default: ‘wmc’.  

7.2.2 Dirichlet Process GMM Classifier (DPGMM)  

 



 

 55 

The DPGMM implements a variant of the Gaussian mixture model with a variable (but bounded) 
number of components using the Dirichlet Process. The API is identical to GMM. 

In order to use the Dirichlet Process Gaussian Mixture Model, the user needs to set the sub-node: 

<SKLtype>mixture|DPGMM</SKLtype>. 

In addition to this XML node, several others are available: 

• <n_components>, integer, optional field, Number of mixture components.  
Default: 1  

• <covariance_type>, string, optional field, describes the type of covariance parameters to use. 
Must be one of ‘spherical’, ‘tied’, ‘diag’, ‘full’.  
Default: diag  

• <alpha>, float, optional field, represents the concentration parameter of the dirichlet process. 
Intuitively, the Dirichlet Process is as likely to start a new cluster for a point as it is to add 
that point to a cluster with alpha elements. A higher alpha means more clusters.  
Default: 1.  

• <thresh>, float, optional field, convergence threshold.  
Default: 0.01  

• <n_iter>, integer, optional field, Number of EM iterations to perform.  
Default: 100  

• <params>, string, optional field, Controls which parameters are updated in the training 
process. Can contain any combination of ‘w’ for weights, ‘m’ for means, and ‘c’ for covars.  
Default: ‘wmc’  

• <init_params>, string, optional field, Controls which parameters are updated in the 
initialization process. Can contain any combination of ‘w’ for weights, ‘m’ for means, and ‘c’ 
for covars.  
Default: ‘wmc’.  

7.2.3 Variational GMM Classifier (VBGMM) 

In order to use the Variational Gaussian Mixture Model, the user needs to set the sub-node: 

<SKLtype>mixture|VBGMM</SKLtype>. 

In addition to this XML node, several others are available: 

• <n_components>, integer, optional field, Number of mixture components.  
Default: 1  

• <covariance_type>, string, optional field, describes the type of covariance parameters to use. 
Must be one of ‘spherical’, ‘tied’, ‘diag’, ‘full’.  
Default: diag  

• <alpha>, float, optional field, represents the concentration parameter of the dirichlet process. 
Intuitively, the Dirichlet Process is as likely to start a new cluster for a point as it is to add 
that point to a cluster with alpha elements. A higher alpha means more clusters.  
Default: 1.  



 

 56 

7.2.4 KMeans Clustering 

 

The KMeans algorithm clusters data by trying to separate samples in n groups of equal variance, 
minimizing a criterion known as the inertia or within-cluster sum-of-squares. This algorithm requires the 
number of clusters to be specified. It scales well to large number of samples and has been used across a 
large range of application areas in many different fields. 

In order to use the KMeans Clustering, the user needs to set the sub-node: 

<SKLtype>cluster|KMeans</SKLtype>. 

In addition to this XML node, several others are available: 

• <n_clusters>, integer, optional field, The number of clusters to form as well as the number of 
centroids to generate.  
Default: 8  

• <max_iter>, integer, optional field, Maximum number of iterations of the k-means algorithm 
for a single run.  
Default: 300  

• <n_init>, integer, optional field, Number of time the k-means algorithm will be run with 
different centroid seeds. The final results will be the best output of n init consecutive runs in 
terms of inertia.  
Default: 10  

• <init>, string, optional field, Method for initialization, k-means++’, ‘random’ or an ndarray:  
Default: k-means++ 

– ‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to 
speed up conver-gence.  

– ‘random’: choose k observations (rows) at random from data for the initial 
centroids.  

– If an ndarray is passed, it should be of shape (n clusters, n features) and gives the 
initial centers.  

• <precompute_distances>, boolean, optional field, Precompute distances (if true faster but 
takes more memory).  
Default: true  

• <tol>, float, optional field, Relative tolerance with regards to inertia to declare convergence.  
Default: 1e-4  

• <n_jobs>, integer, optional field, The number of jobs to use for the computation. This works 
by breaking down the pairwise matrix into n jobs even slices and computing them in parallel. 
If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful 
for debugging. For n jobs below -1, (n cpus + 1 + n jobs) are used. Thus for n jobs = -2, all 
CPUs but one are used. 
Default: 1 

• <random_state>, integer or numpy.RandomState, optional field, The generator used to 
initialize the centers. If an integer is given, it fixes the seed.  
Default: the global numpy random number generator.  



 

 57 

7.2.5 Mini Batch K-Means Clustering 

The MiniBatchKMeans is a variant of the KMeans algorithm which uses mini-batches to reduce the 
computation time, while still attempting to optimise the same objective function. MiniBatchKMeans 
converges faster than KMeans, but the quality of the results is reduced. In practice this difference in 
quality can be quite small. 

In order to use the Mini Batch K-Means Clustering, the user needs to set the sub-node: 

<SKLtype>cluster|MiniBatchKMeans</SKLtype>. 

In addition to this XML node, several others are available: 

• <n_clusters>, integer, optional field, The number of clusters to form as well as the number of 
centroids to generate.  
Default: 8  

• <max_iter>, integer, optional field, Maximum number of iterations of the k-means algorithm 
for a single run.  
Default: 100  

• <max_no_improvement>, integer, optional field, Control early stopping based on the 
consecutive number of mini batches that does not yield an improvement on the smoothed 
inertia. To disable convergence detection based on inertia, set max no improvement to None.  
Default: 10  

• <tol>, float, optional field, Control early stopping based on the relative center changes as 
measured by a smoothed, variance-normalized of the mean center squared position changes. 
This early stopping heuristics is closer to the one used for the batch variant of the algorithms 
but induces a slight computational and memory overhead over the inertia heuristic. To disable 
convergence detection based on normalized center change, set tol to 0.0.  
Default: 0.0  

• <batch_size>, integer, optional field, Size of the mini batches.  
Default: 100  

• <init_size>, integer, optional field, Number of samples to randomly sample for speeding up 
the initialization (sometimes at the expense of accuracy): the only algorithm is initialized by 
running a batch KMeans on a random subset of the data. This needs to be larger than k.  
Default: 3 * <batch_size>  

• <init>, string, optional field, Method for initialization, k-means++’, ‘random’ or an ndarray:  
– ‘k-means++’ : selects initial cluster centers for k-mean clustering in a smart way to 

speed up conver-gence.  
– ‘random’: choose k observations (rows) at random from data for the initial 

centroids.  
– If an ndarray is passed, it should be of shape (n clusters, n features) and gives the 

initial centers.  
Default: k-means++ 

• <precompute_distances>, boolean, optional field, Precompute distances (if true faster but 
takes more memory).  
Default: true  

• <n_init>, integer, optional field, Number of time the k-means algorithm will be run with 
different centroid seeds. The final results will be the best output of n init consecutive runs in 
terms of inertia.  



 

 58 

Default: 3  
• <compute_labels>, boolean, optional field, Compute label assignment and inertia for the 

complete dataset once the minibatch optimization has converged in fit.  
Default: True  

• <random_state>, integer or numpy.RandomState, optional field The generator used to 
initialize the cen-ters. If an integer is given, it fixes the seed.  
Default: the global numpy random number generator.  

• <reassignment_ratio>, float, optional field, Control the fraction of the maximum number of 
counts for a center to be reassigned. A higher value means that low count centers are more 
easily reassigned, which means that the model will take longer to converge, but should 
converge in a better clustering.  
Default: 0.01  

7.2.6 Affinity Propagation  

Affinity Propagation creates clusters by sending messages between pairs of samples until 
convergence. 

In order to use the Affinity Propagation Clustering, the user needs to set the sub-node: 

<SKLtype>cluster|AffinityPropagation</SKLtype>. 

In addition to this XML node, several others are available: 

• <damping>, float, optional field, Damping factor between 0.5 and 1.  
Default: 0.5  

• <convergence_iter>, integer, optional field, Number of iterations with no change in the 
number of esti-mated clusters that stops the convergence.  
Default: 15  

• <max_iter>, integer, optional field, Maximum number of iterations.  
Default: 200  

• <copy>, boolean, optional field, Make a copy of input data or not.  
Default: True  

• <preference>, array-like, shape (n samples,) or float, optional field, Preferences for each 
point - points with larger values of preferences are more likely to be chosen as exemplars. 
The number of exemplars, i.e. of clusters, is influenced by the input preferences value.  
Default: If the preferences are not passed as arguments, they will be set to the median of the 
input similarities.  

• <affinity>, string, optional field, Which affinity to use. At the moment precomputed and 
euclidean are supported. euclidean uses the negative squared euclidean distance between 
points.  
Default: “euclidean“  

• <verbose>, boolean, optional field, Whether to be verbose.  
Default: False  

7.2.7 Mean Shift  

In order to use the Mean Shift Clustering, the user needs to set the sub-node: 



 

 59 

<SKLtype>cluster|MeanShift</SKLtype>. 

In addition to this XML node, several others are available: 

• <bandwidth>, float, optional field, Bandwidth used in the RBF kernel. If not given, the 
bandwidth is estimated using sklearn.cluster.estimate bandwidth; see the SciKit-
Learn documentation for that function for hints on scalability.  
Default: sklearn.cluster.estimate 

• <seeds>, array, shape=[n samples, n features], optional field, Seeds used to initialize 
kernels. If not set, the seeds are calculated by clustering.get bin seeds with bandwidth 
as the grid size and default values for other parameters.  
Default: clustering.get 

• <bin_seeding>, boolean, optional field, If true, initial kernel locations are not locations of all 
points, but rather the location of the discretized version of points, where points are binned 
onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will 
speed up the algorithm because fewer seeds will be initialized.  
Default: False Ignored if seeds argument is not None.  

• <min_bin_freq>, integer, optional field, To speed up the algorithm, accept only those bins 
with at least min bin freq points as seeds.  
Default: 1.  

• <cluster_all>, boolean, optional field, If true, then all points are clustered, even those 
orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, 
then orphans are given cluster label -1.  
Default: True  

7.2.8 Spectral clustering  

Spectral Clustering does a low-dimension embedding of the affinity matrix between samples, 
followed by a KMeans in the low dimensional space 

In order to use the Spectral Clustering, the user needs to set the sub-node: 

<SKLtype>cluster|Spectral</SKLtype>. 

In addition to this XML node, several others are available: 

• <n_clusters>, integer, optional field, The dimension of the projection subspace.  
Default: 8  

• <affinity>, string, array-like or callable, optional field, If a string, this may be one of:  
– ‘nearest neighbors’,  
– ‘precomputed’,  
– ‘rbf’ or  
– one of the kernels supported by sklearn.metrics.pairwise kernels.  

Default: ‘rbf’ 
• <gamma>, float, optional field, Scaling factor of RBF, polynomial, exponential chi2 and 

sigmoid affinity kernel. Ignored for affinity =0 nearest neighbors0.  
Default: 1.0  

• <degree>, float, optional field, Degree of the polynomial kernel. Ignored by other kernels.  



 

 60 

Default: 3  
• <coef0>, float, optional field, Zero coefficient for polynomial and sigmoid kernels. Ignored 

by other kernels.  
Default: 1  

• <n_neighbors>, integer, optional field, Number of neighbors to use when constructing the 
affinity matrix using the nearest neighbors method. Ignored for affinity=’rbf’.  
Default: 10  

• <eigen_solver> string, optional field, The eigenvalue decomposition strategy to use:  
– None,  
– ‘arpack’,  
– ‘lobpcg’, or  
– ‘amg’  

Note: AMG requires pyamg to be installed. It can be faster on very large, sparse problems, 
but may also lead to instabilities 
Default: None 

• <random_state>, integer seed, RandomState instance, or None, optional field, A pseudo 
random number generator used for the initialization of the lobpcg eigen vectors 
decomposition when <eigen_solver> is  ‘amg’ and by the K-Means initialization.  
Default: None  

• <n_init>, integer, optional field, Number of time the k-means algorithm will be run with 
different centroid seeds. The final results will be the best output of n init consecutive runs in 
terms of inertia.  
Default: 10  

• <eigen_tol>, float, optional field, Stopping criterion for eigendecomposition of the Laplacian 
matrix when using arpack eigen solver.  
Default: 0.0  

• <assign_labels>, string, optional field, The strategy to use to assign labels in the embedding 
space. There are two ways to assign labels after the laplacian embedding:  

– ‘kmeans’,  
– ‘discretize’  

k-means can be applied and is a popular choice. But it can also be sensitive to initialization. 
Discretization is another approach which is less sensitive to random initialization. 
Default: ‘kmeans’ 

• <kernel_params>, dictionary of string to any, optional field, Parameters (keyword 
arguments) and values for kernel passed as callable object. Ignored by other kernels.  
Default: None  

7.2.9 DBSCAN Clustering  

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm views 
clusters as areas of high density separated by areas of low density. Due to this rather generic view, 
clusters found by DBSCAN can be any shape, as opposed to k-means which assumes that clusters are 
convex shaped. 

In order to use the DBSCAN Clustering, the user needs to set the sub-node: 

<SKLtype>cluster|DBSCAN</SKLtype>. 

In addition to this XML node, several others are available: 



 

 61 

• <eps>, float, optional field, The maximum distance between two samples for them to be 
considered as in the same neighborhood.  
Default: 0.5  

• <min_samples>, integer, optional field, The number of samples in a neighborhood for a 
point to be consid-ered as a core point.  
Default: 5  

• <metric>, string, or callable, optional field The metric to use when calculating distance 
between instances in a feature array. If metric is a string or callable, it must be one of the 
options allowed by metrics.pairwise.calculate distance for its metric parameter. If metric is 
“precomputed”, X is assumed to be a distance matrix and must be square.  
Default: ’ecleudian’  

• <random_state>, numpy.RandomState, optional field, The generator used to initialize the 
centers.  
Default: numpy.random.  
 

7.2.10 Exact PCA 
Linear Dimensionality reduction using Singular Value Decomposition of the data and keeping only 

the most significant singular vectors to project the data to a lower dimensional space. 

In order to use the Exact PCA, the user needs to set the sub-node: 

<SKLtype>decomposition|PCA</SKLtype>. 

In addition to this XML node, several others are available: 

• <n_components>, integer, None, or String, optional field, Number of components to keep. if 
n_components is not set all components are kept:.  
Default: all components 

• <copy>, boolean, optional field, If False, data passed to fit are overwritten and running 
fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead..  
Default: True 

• <whiten>, boolean, optional field, When True (False by default) the components_ vectors are 
divided by n_samples times singular values to ensure uncorrelated outputs with unit 
component-wise variances.Whitening will remove some information from the transformed 
signal (the relative variance scales of the components) but can sometime improve the 
predictive accuracy of the downstream estimators by making there data respect some hard-
wired assumptions.  
Default: False.  

7.2.11 Randomized (Approximate) PCA 
Linear Dimensionality reduction using Singular Value Decomposition of the data and keeping only 

the most significant singular vectors to project the data to a lower dimensional space. 

In order to use the Randomized PCA, the user needs to set the sub-node: 

<SKLtype>decomposition|RandomizedPCA</SKLtype>. 



 

 62 

In addition to this XML node, several others are available: 

• <n_components>, integer, None, or String, optional field, Number of components to keep. if 
n_components is not set all components are kept:.  
Default: all components 

• <copy>, boolean, optional field, If False, data passed to fit are overwritten and running 
fit(X).transform(X) will not yield the expected results, use fit_transform(X) instead..  
Default: True 

• <iterated_power>, int, optional field, Number of iterations for the power method.  
Default: 3 

• <whiten>, boolean, optional field, When True (False by default) the components_ vectors are 
divided by n_samples times singular values to ensure uncorrelated outputs with unit 
component-wise variances.Whitening will remove some information from the transformed 
signal (the relative variance scales of the components) but can sometime improve the 
predictive accuracy of the downstream estimators by making there data respect some hard-
wired assumptions.  
Default: False.  

• <random_state>, int, or Random State instance or None, optional field, Pseudo Random 
Number generator seed control. If None, use the numpy.random singleton.  
Default: None 

7.2.12 Kernel PCA 
Non-linear dimensionality reduction through the use of kernels.. 

In order to use the Kernel PCA, the user needs to set the sub-node: 

<SKLtype>decomposition|KernelPCA</SKLtype>. 

In addition to this XML node, several others are available: 

• <n_components>, integer, None, or String, optional field, Number of components to keep. if 
n_components is not set all components are kept:.  
Default: all components 

• <kernel>, string, optional field, name of the kernel to be used, options are: 
– linear 
– poly  
– rbf 
– sigmoid 
– cosine 
– precomputed 

Default: linear 
• <degree>, int, optional field, Degree for poly kernels, ignored by other kernels.  

Default: 3 
• <gamma>, float, optional field, Kernel coefficient for rbf and poly kernels, ignored by other 

kernels.  
Default: 1/n_features 
 



 

 63 

• <coef0>, float, optional field, independent term in poly and sigmoig kernels, ignored by other 
kernels.  

• <kernel_params>, mapping of string to any, optional field, Parameters (keyword arguments) 
and values for kernel passed as callable object. Ignored by other kernels.  
Default: 3 

• <alpha>, int, optional field, Hyperparameter of the ridge regression that learns the inverse 
transform (when fit_inverse_transform=True).  
Default: 1.0 

• <fit_inverse_transform>, bool, optional field, Learn the inverse transform for non-
precomputed kernels. (i.e. learn to find the pre-image of a point)  
Default: False.  

• <eigen_solver>, string, optional field, Select eigensolver to use. If n_components is much 
less than the number of training samples, arpack may be more efficient than the dense 
eigensolver. Options ar: 

– auto 
– dense 
– arpack 

Default: False.  
• <tol>, float, optional field, convergence tolerance for arpack.  

Default: 0 (optimal value will be chosen by arpack) 
• <max_iter>, int, optional field, maximum number of iterations for arpack.  

Default: None (optimal value will be chosen by arpack) 
• <remove_zero_eig>, boolean, optional field, If True, then all components with zero 

eigenvalues are removed, so that the number of components in the output may be < 
n_components (and sometimes even zero due to numerical instability). When n_components 
is None, this parameter is ignored and components with zero eigenvalues are removed 
regardless. 
Default: True 

7.2.13 Sparse PCA 

Finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness 
is controllable by the coefficient of the L1 penalty, given by the parameter alpha. 

In order to use the Sparse PCA, the user needs to set the sub-node: 

<SKLtype>decomposition|SparsePCA</SKLtype>. 

In addition to this XML node, several others are available: 

• <n_components>, integer, optional field, Number of sparse atoms to extract:.  
Default: None 

• <alpha>, float, optional field, Sparsity controlling parameter. Higher values lead to sparser 
components. 
Default: 1.0 

• <ridge_alpha>, float, optional field, Amount of ridge shrinkage to apply in order to improve 
conditioning when calling the transform method.  
Default: 0.01 

• <max_iter>, float, optional field, maximum number of iterations to perform.  



 

 64 

Default: 1000 
• <tol>, float, optional field, convergence tolerance.  

Default: 1E-08  
• <method>, string, optional field, method to use, options are: 

– lars, 
– cd 

lars: uses the least angle regression method to solve the lasso problem 
(linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso 
solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. 
Default: lars 

• <n_jobs>, int, optional field, number of parallel runs to run.  
Default: 1 

• <U_init>, array of shape (n_samples, n_components), optional field, Initial values for the 
loadings for warm restart scenarios 
Default: None.  

• <V_init>, array of shape (n_components, n_features), optional field, Initial values for the 
components for warm restart scenarios 
Default: None.  

• <verbose>, boolean, optional field, Degree of verbosity of the printed output.  
Default: False  

• <random_state>, int or Random State, optional field, Pseudo number generator state used 
for random sampling. 
Default: None 
 

7.2.14 Mini Batch Sparse PCA 

Finds the set of sparse components that can optimally reconstruct the data. The amount of sparseness 
is controllable by the coefficient of the L1 penalty, given by the parameter alpha. 

In order to use the Mini Batch Sparse PCA, the user needs to set the sub-node: 

<SKLtype>decomposition|MiniBatchSparsePCA</SKLtype>. 

In addition to this XML node, several others are available: 

• <n_components>, integer, optional field, Number of sparse atoms to extract:.  
Default: None 

• <alpha>, float, optional field, Sparsity controlling parameter. Higher values lead to sparser 
components. 
Default: 1.0 

• <ridge_alpha>, float, optional field, Amount of ridge shrinkage to apply in order to improve 
conditioning when calling the transform method.  
Default: 0.01 

• <n_iter>, float, optional field, number of iterations to perform per mini batch.  
Default: 100 

• <callback>, callable, optional field, callable that gets invoked every five iterations.  
Default: None  

• <batch_size>, int, optional field, the number of features to take in each mini batch 



 

 65 

Default: 3.  
• <verbose>, boolean, optional field, Degree of verbosity of the printed output.  

Default: False  
• <shuffle >, boolean, optional field, whether to shuffle the data before splitting it in batches.  

Default: True 
• <n_jobs>, int, optional field, Parameters (keyword arguments) and values for kernel passed 

as callable object. Ignored by other kernels.  
Default: 3 

• <method>, string, optional field, method to use, options are: 
– lars, 
– cd 

lars: uses the least angle regression method to solve the lasso problem 
(linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso 
solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. 
Default: lars 

• <random_state>, int or Random State, optional field, Pseudo number generator state used 
for random sampling. 
Default: None 

7.2.15 Truncated SVD 

Dimensionality reduction using truncated SVD (aka LSA). 

In order to use the Truncated SVD, the user needs to set the sub-node: 

<SKLtype>decomposition|TruncatedSVD </SKLtype>. 

In addition to this XML node, several others are available: 

• <n_components>, integer, optional field, Desired dimensionality of output data. Must be 
strictly less than the number of features. The default value is useful for visualisation. For 
LSA, a value of 100 is recommended.  
Default: 2 

• <algorithm>, string, optional field, SVD solver to use: 
– Randomized: randomized algorithm 
– Arpack: ARPACK wrapper in. 

Default: Randomized 
• <n_iter>, float, optional field, number of iterations andomized SVD solver. Not used by 

ARPACK.  
Default: 5 

• <random_state>, int or Random State, optional field, Pseudo number generator state used 
for random sampling. If not given, the numpy.random singleton is used. 
Default: None 

• <tol>, float, optional field, Tolerance for ARPACK. 0 means machine precision. Ignored by 
randomized SVD solver. 
Default: 0.0 
 



 

 66 

7.2.16 FastICA 

A fast algorithm for Independent Component Analysis. 

In order to use the FastICA, the user needs to set the sub-node: 

<SKLtype>decomposition|FastICA </SKLtype>. 

In addition to this XML node, several others are available: 

• <n_components>, integer, optional field, Number of components to use. If none is passed, 
all are used. 
Default: None 

• <algorithm>, string, optional field, algorithm used in FastICA: 
– parallel, 
– deflation. 

Default: parallel 
• <fun>, string or function, optional field, The functional form of the G function used in the 

approximation to neg-entropy. Could be either : 
– logcosh, 
– exp, or 
– cube. 

One can also provide own function. It should return a tuple containing the value of the 
function, and of its derivative, in the point.  
Default: logcosh 

• <fun_args>, dictionary, optional field, Arguments to send to the functional form. If empty 
and if fun=’logcosh’, fun_args will take value {‘alpha’ : 1.0}.. 
Default: None 

• <max_iter>, float, optional field, maximum number of iterations during fit.  
Default: 200 

• <tol>, float, optional field, Tolerance on update at each iteration. 
Default: 0.0001 

• <w_init>, None or an (n_components, n_components) ndarray, optional field, The mixing 
matrix to be used to initialize the algorithm.  
Default: None 

• <randome_state>, int or Random State, optional field, Pseudo number generator state used 
for random sampling.  
Default: None 
 

7.2.17 Isometric Manifold Learning 

Non-linear dimensionality reduction through Isometric Mapping (Isomap). 

In order to use the Isometric Mapping, the user needs to set the sub-node: 

<SKLtype>manifold|Isomap</SKLtype>. 



 

 67 

In addition to this XML node, several others are available: 

• <n_neighbors>, integer, optional field, Number of neighbors to consider for each point. 
Default: 5 

• <n_components>, integer, optional field, Number of coordinates to manifold. 
Default: 2 

• <eigen_solver>, string, optional field, eigen solver to use: 
– auto: Attempt to choose the most efficient solver for the given problem, 
– arpack: Use Arnoldi decomposition to find the eigenvalues and eigenvectors 
– dense: Use a direct solver (i.e. LAPACK) for the eigenvalue decomposition 

Default: auto 
• <tol>, float, optional field, Convergence tolerance passed to arpack or lobpcg. not used if 

eigen_solver is ‘dense’.. 
Default: 0.0 

• <max_iter>, float, optional field, Maximum number of iterations for the arpack solver. not 
used if eigen_solver == ‘dense’. 
Default: None 

• <path_method>, string, optional field, Method to use in finding shortest path. Could be 
either: 

– Auto: attempt to choose the best algorithm 
– FW: Floyd-Warshall algorithm 
– D: Dijkstra algorithm with Fibonacci Heaps 

.  
Default: auto 

• <neighbors_algorithm>, string, optional field, Algorithm to use for nearest neighbors 
search, passed to neighbors.NearestNeighbors instance. 

– auto, 
– brute 
– kd_tree 
– ball_tree 

Default: auto 
 

7.2.18 Locally Linear Embedding 

In order to use the Locally Linear Embedding, the user needs to set the sub-node: 

<SKLtype>manifold| LocallyLinearEmbedding</SKLtype>. 

In addition to this XML node, several others are available: 

• <n_neighbors>, integer, optional field, Number of neighbors to consider for each point. 
Default: 5 

• <n_components>, integer, optional field, Number of coordinates to manifold. 
Default: 2 

• <reg >, float, optional field, regularization constant, multiplies the trace of the local 
covariance matrix of the distances. 
Default: 0.01 



 

 68 

• <eigen_solver>, string, optional field, eigen solver to use: 
– auto: Attempt to choose the most efficient solver for the given problem, 
– arpack: use arnoldi iteration in shift-invert mode. 
– dense: use standard dense matrix operations for the eigenvalue 

Default: auto 
• <tol>, float, optional field, Convergence tolerance passed to arpack. not used if eigen_solver 

is ‘dense’.. 
Default: 1E-06 

• <max_iter>, int, optional field, Maximum number of iterations for the arpack solver. not 
used if eigen_solver == ‘dense’. 
Default: 100 

• <method>, string, optional field, Method to use. Could be either: 
– Standard: use the standard locally linear embedding algorithm 
– hessian: use the Hessian eigenmap method 
– itsa: use local tangent space alignment algorithm 

Default: standard 
• <hessian_tol>, float, optional field, Tolerance for Hessian eigenmapping method. Only used 

if method == 'hessian' 
Default: 0.0001 

• <modified_tol>, float, optional field, Tolerance for modified LLE method. Only used if 
method == 'modified' 
Default: 0.0001 

• <neighbors_algorithm>, string, optional field, Algorithm to use for nearest neighbors 
search, passed to neighbors.NearestNeighbors instance. 

– auto, 
– brute 
– kd_tree 
– ball_tree 

Default: auto 
• <random_state>, int or numpy random state, optional field, the generator or seed used to 

determine the starting vector for arpack iterations. 
Default: None 

7.2.19 Spectral Embedding 

Spectral embedding for non-linear dimensionality reduction, it forms an affinity matrix given by the 
specified function and applies spectral decomposition to the corresponding graph laplacian. The resulting 
transformation is given by the value of the eigenvectors for each data point. 

In order to use the Spectral Embedding, the user needs to set the sub-node: 

<SKLtype>manifold|SpectralEmbedding</SKLtype>. 

In addition to this XML node, several others are available: 

 
• <n_components>, integer, optional field, the dimension of projected sub-space. 

Default: 2 



 

 69 

• <eigen_solver>, string, optional field, the eigen value decomposition strategy to use: 
– none, 
– arpack. 
– lobpcg, 
– amg 

Default: none 
• <random_state>, int or numpy random state, optional field, A pseudo random number 

generator used for the initialization of the lobpcg eigen vectors decomposition when 
eigen_solver == ‘amg. 
Default: None 

• <affinity>, string or callable, optional field, How to construct the affinity matrix: 
– nearest_neighbors’ : construct affinity matrix by knn graph 
– ‘rbf’ : construct affinity matrix by rbf kernel 
– ‘precomputed’ : interpret X as precomputed affinity matrix 
– callable : use passed in function as affinity the function takes in data matrix 

(n_samples, n_features) and return affinity matrix (n_samples, n_samples). 
Default: nearest_neighbor 

• <gamma>, float, optional field, Kernel coefficient for rbf kernel. 
Default: None 

• <n_neighbors>, int, optional field, Number of nearest neighbors for nearest_neighbors graph 
building. 
Default: None 
 

7.2.20 MDS  

In order to use the Multi Dimensional Scaling, the user needs to set the sub-node: 

<SKLtype>manifold| MDS</SKLtype>. 

In addition to this XML node, several others are available: 

• <metric >, boolean, optional field, compute metric or nonmetric SMACOF (Scaling by 
Majorizing a Complicated Function) algorithm 
Default: True 

• <n_components>, integer, optional field, number of dimension in which to immerse the 
similarities overridden if initial array is provided. 
Default: 2 

• <n_init>, int, optional field, Number of time the smacof algorithm will be run with different 
initialisation. The final results will be the best output of the n_init consecutive runs in terms 
of stress. 
Default: 4 

• <max_iter>, int, optional field, Maximum number of iterations of the SMACOF algorithm 
for a single run 
Default: 300 

• <verbose>, int, optional field, level of verbosity 
Default: 0 

• <eps>, float, optional field, relative tolerance with respect to stress to declare converge 



 

 70 

Default: 1E-06 
• <n_jobs>, int, optional field, The number of jobs to use for the computation. This works by 

breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If 
-1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful 
for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all 
CPUs but one are used. 
Default: 1 

• <random_state>, int or numpy random state, optional field, The generator used to initialize 
the centers. If an integer is given, it fixes the seed. Defaults to the global numpy random 
number generator. 
Default: None 

• <dissimilarity>, string, optional field, Which dissimilarity measure to use. Supported are 
‘euclidean’ and ‘precomputed’. 
Default: euclidean’ 

 


