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INTRODUCTION

The RAVEN computer code [1, 2, 3], developed at the
Idaho National Laboratory, is a generic software framework
to perform parametric and probabilistic analysis based on the
response of complex system codes. RAVEN is a multi-purpose
probabilistic and uncertainty quantification platform, capable
to communicate with any system code.
A natural extension of the RAVEN capabilities is the imple-
mentation of an integrated validation methodology, involving
several different metrics, that represent an evolution of the
methods currently used in the field [4]. The state-of-art vali-
dation approaches use neither exploration of the input space
through sampling strategies, nor a comprehensive variety of
metrics needed to interpret the code responses, with respect
experimental data. The RAVEN code allows to address both
these lacks [5].
In the following sections, the employed methodology, and its
application to the newer developed thermal-hydraulic code
RELAP-7 [6], is reported.The validation approach has been
applied on an integral effect experiment, representing natu-
ral circulation, based on the activities performed by EG&G
Idaho [7]. Four different experiment configurations have been
considered and nodalized.

PROPOSED VALIDATION METRICS

The validation activities of system codes are always fun-
damental processes in the development and assessment of the
accuracy of the employed physical models. The state-of-art
methodology is well described by Oberkampf et al.,2010 [4].
Such approach treats uncertainties individually (i.e. each un-
certain parameter is considered distinctly from one another),
while the proposed methodology path performs the exploration
of the input space considering the associated uncertainties al-
together and analyzes the responses through the use of several
validation metrics. Uncertainties in the input space are taken
into account separately from ones in the output space. As
already mentioned, Such distinction is performed employing
sampling of the input space. Such capability, available in the
RAVEN code, permits to compare a larger sample of data.
This approach allows multiple and more precise comparisons
as an alternative of using comparison on single code runs data.

Parameter Identification

The first step in any code validation is the identification
of the parameters that actively influence the response of the
system. These parameters are going to be dived in two sets:
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dependent and independent. The independent parameters are
the ones which are set up in the experiment, and are therefore
going to be the initial conditions and boundary conditions of
the model described in the input of the code under investiga-
tion. The dependent parameters instead, are the Figures Of
Merit (FOM) relevant to measure. When the experiment is
carried out, many field variables are monitored, but, gener-
ally, only few of them are considered to be representative of
the physics of the experiment, and therefore objects of the
comparison with the system code under validation.

Input Uncertainties

In order to assess the accuracy of the system code under
consideration, it is, obviously, fundamental the inclusion of the
experimental data uncertainties. As already mentioned, those
uncertainties are going to be directly mirrored in the input
space of the experiment, being modeled with the system code
under investigation. The uncertainties associated to the input
space can be represented by Probability Density Functions
(PDFs); when dealing with experiment uncertainties, it is com-
mon practice to use the following PDFs, sorted in ascending
order of “knowledge” regarding the uncertainty sources:
• Uniform PDF: used when no knowledge of the dispersion

and mean of the data are available, but only the variation
boundaries (i.e. lower and upper boundaries);

• Triangular PDF: utilized when the variation boundaries
and the most probable mean are known, but no informa-
tion on the dispersion of the data are available;

• Normal PDF: used when information about the mean and
dispersion is available.

Output Uncertainties

As already mentioned, when performing validation ac-
tivities, the FOMs that are considered in the “comparison”
between the experimental and system code responses are af-
fected by different sources of uncertainties.
As it is well known, the experimental data are affected by
uncertanties coming from different sources:
• Determinate errors, also called “systematic” uncertainties,

related to the measurement devices (e.g mis-calibration,
hysteresis, full-scale, etc.);

• Human errors, introduced by the experimentalist;
• Indeterminate (Random) errors, related to variation in

experimental conditions, operator bias, or other factors
not easily accounted for.

The system code responses are affected by uncertainties that,
obviously, come from the modeling approximation [4], such
as:



• Computer Round-off Error (introduced when exact solu-
tion can not be obtained from discrete equations);

• Iterative Convergence Error (introduced when truncation
close to the solution occurs);

• Spatial and Temporal Discretization Error;
• Statistical Sampling Error;
• Response Surface Error.

IMPLEMENTATION OF VALIDATION METRICS

The final objective of a validation is to compare the results
from the system code under investigation to the results of the
experiments. Before such comparison can be achieved, the
data has first to be sorted and then evaluated.

Binning

RAVEN uses an automatic binning algorithm in order to
subdivide the output data and minimize the noise caused from
statistical sampling. Given a certain response surface, as the
one shown in Figure 1, RAVEN subdivides the domain of the
output parameters in equally spaced intervals. In Figure 2
there is the subdivision of the data after RAVEN computed
the optimal number of bins. The optimal number of bins is
calculated using Eq. (1), but in RAVEN there is a wide range
of options, depending on the distribution of the input.

k =
⌈
log2n + 1

⌉
(1)

Sensitivity Analysis

RAVEN, during the output analysis, has the capability to
calculate all the sensitivity coefficients between chosen param-
eters [8]. The sensitivity matrix generated can be used to study
the dependence of the system parameter from a certain input
sampling. This method is used to check that the parameters
sampled in the input space and the response of the system are
dependent from one another, and if so, if they are correlated
as expected. The sensitivity coefficients give the linear cor-
relation between input and output parameters; by calculating
the relative error between this linear regression and the actual
output of the system, the interdependence among the param-
eter can be reconstructed. The equation used to linearize the
problem is Eq. (2).

Alin =
∂A
∂B

(B − 〈B〉) + 〈A〉 (2)

CDF and PDF Reconstruction

With all the output data divided in the optimized num-
ber of bins, the probability curves are constructed. The first
function built is the Cumulative Distribution Function. The
number of output counts in each bin, or intervals, as shown
in Figure 2, is normalized to one and summed up bin by bin.
The normalization occurs by summing up the total number of
counts, and using this sum as a quotient for each channel’s
number. This normalization is needed in order to achieve the
constraint of the final sum of the bin count to one, constraint
needed for the PDF. A quadratic interpolation is then used to
fit the data. A data sample is shown in Table I. The example

shown represents the mass flow rate in the loop. The resulting
function is referred as R(x).

From the CDF the derivative is calculated, using the tree
point derivation method, in order to compute the probability
distribution function, referred as R′(x). RAVEN then proceeds
to build a function and plot of a distribution with the input
given parameters, in our case a normal distribution given the
mean value and the standard deviation. The CDF is referred
as E(x) and the PDF as E′(x).

Functions Comparison

Having the continuous functions for the CDFs and PDFs
for both the code output and the experiment RAVEN uses
differerent comparison metrics together.

CDF Area Metric

The first metric, also called Minkowsky L1 metric, cal-
culates the area difference between the code output CDF and
the experimental CDF using Eq. (3). An example is shown in
Figure 4

d(R, E) =

∫ ∞

−∞

|R(x) − E(x)|dx (3)

Since the CDF is obviously normalized to one, whatever re-
sults from this metric gives an estimation in terms of the unit
of measured used.

PDF Area Metric

This metric instead calculates the area underneath both
PDFs. It gives out a degree of agreement between the two
distributions. This metric is not unit sensitive, the result is
given in percentace of agreement.

I =

∫ ∞

−∞

R′(x)dx ∩
∫ ∞

−∞

E′(x)dx (4)

Difference of Continuous Functions

Being z a continuous random variable equal to the dif-
ference of two random variables, and being the two random
variables statistically independent it can be calculated Eq. (5)

fz(z) =

∫ ∞

−∞

R′(x)E′(x − z)dx (5)

Eq. (5) is a PDF representing the difference of the two PDFs.
The domain is over the variable z, and it is unit measure
sensitive. Calculating the mean of this distribution gives the
value for which the two PDFs best overlap. Calculating the
standard deviation of this distribution returns how much the
two PDFs differ once they are at the best overlapping position.

TEST CASE

The study case presented is a natural circulation experi-
ment [7]. In such kind of experiment the independent variables,
the ones set up by the experimentalists, are the power in the
core and the pressure in the primary and secondary loops. As
described, being this case study a natural circulation experi-
ment, the most relevant figures of merit to analyze are: mass



TABLE I. CDF and PDF recontruction for primary loop mass flow rate.

Bin Midpoint Bin Count Normalized Count CDF PDF

2.4313E-01 1 1.2000E-04 1.2000E-04 8.7400E-03
2.4451E-01 3 3.6000E-04 5.8000E-04 7.4970E-02
2.4589E-01 14 1.6900E-03 2.1700E-03 4.3748E-01
2.4727E-01 62 7.4900E-03 9.6600E-03 3.8936E+00
2.4865E-01 196 2.3680E-02 3.3340E-02 2.4499E+01
2.5003E-01 499 6.0280E-02 9.3620E-02 6.2035E+01
2.5142E-01 937 1.1319E-01 2.0681E-01 1.1099E+02
2.5280E-01 1393 1.6828E-01 3.7509E-01 1.4415E+02
2.5418E-01 1642 1.9836E-01 5.7345E-01 1.6808E+02
2.5556E-01 1631 1.9702E-01 7.7048E-01 1.6808E+02
2.5694E-01 1051 1.2696E-01 8.9744E-01 6.2998E+01
2.5832E-01 553 6.6800E-02 9.6424E-01 2.5943E+01
2.5970E-01 219 2.6450E-02 9.9070E-01 7.8310E+00
2.6108E-01 64 7.7300E-03 9.9843E-01 1.7062E+00
2.6246E-01 13 1.5700E-03 1.0000E+00 3.7480E-02

Fig. 1. RAVEN/RELAP-7 output: Mass flow rate response
surface.

flow rate, hot leg and cold leg temperatures. Meanwhile the
input variables are primary pressure and core power, with the
following uncertainties.

Pressure Power

±0.1 MPa ±1 kW

The optimized number of Monte Carlo samples was calcu-
lated to be 8000 runs for each input of the input deck (different
inputs were built with different boundary and initial conditions,
following the different experimental set-ups). This optimiza-
tion comes from the need of having a large amount of runs
needed to reduce the noise generated by statistical sampling,
against the computational time needed for each run. The fig-
ures of merit that were chosen to compare to the experimental
results were the mass flow rate in the primary loop and the
temperature in cold leg and hot leg. To those parameters there
were associated the following uncertainties:

Fig. 2. Histogram after optimized binning.

Mass Flow Temperature

±0.033 kg/s ±2 K

In Eq. (1), using n ' 8000 for the number of Monte Carlo
samples, they are calculated a number of bins k = 15. In
Figure 3 it is shown the plot of the relative error between the
linearized output of mass flow rate as function of core power.
Since the mass flow rate is proportional to the cube root of the
core power [9], the error between the cube root behaviour and
the linear regression is shown in Figure 3.

CONCLUSIONS

As it is easily inferable, the RAVEN code has just started
to face the fundamental topic of the validation activities. The
approach, here briefly proposed, represents a comprehensive
methodology to assess the ability, of a generic system code, to
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Fig. 3. Relative error as function of core power.

Fig. 4. CDF Comparison.

model the reality. All the validation metrics currently available
in RAVEN can provide a much better and clearer assessment
of the accuracy boundaries of the code under investigation
then a single metric approach. Obviously, the here reported
methodology only represents the starting point on which all
the future development is going to be based on. In the near
future, multi-dimensional distribution (Multivariate and Cus-
tom) are going to be finalized. These distributions are crucial
in modeling the correlations, in the input and output space,
among different uncertain parameters (FOMs).
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