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The investigation of operational limits for nuclear 
fuel is a challenging subject and at the same time 
important to ensure reliability and safety of the nuclear 
energy production. The parametric and probabilistic 
analysis of failure is a very expensive process that might 
require thousands of simulations while exploring the 
input space by altering the input parameters. This paper 
will demonstrate how RAVEN is a suitable tool to perform 
such analysis. While RAVEN is fully capable to perform 
the needed parametric analysis, it can also use artificial 
intelligence to speed up the reliability/safety evaluation. 
In particular artificial intelligence algorithms are used to 
accelerate the search of the limit/reliability surfaces. 

This paper will review the concept of limit surface 
and its numerical representation, and will explain how 
support vector machine type algorithms are used to speed 
up the limit surface search. The limit surface location is 
then used to perform evaluation of the failure probability. 
This last step is examined in detail from the point of view 
of its numerical implementation. 

 
I. INTRODUCTION 

 
The investigation of operational limits for nuclear 

fuel is a challenging subject and at the same time 
important to ensure reliability and safety of the nuclear 
energy production. The simulation tools used to perform 
the analysis, presented in this paper, are the RAVEN1,2 
and the BISON3 codes. RAVEN is a code developed at 
the Idaho National Laboratory (INL) founded by the 
Nuclear Energy Advanced Modeling and Simulation4 
(NEAMS) DOE program in support of the Light Water 
Reactor Sustainability5 DOE campaign. BISON is a fuel 
performance code developed at INL, currently sponsored 
by several DOE program as NEAMS and the Consortium 
for Advanced Simulation of Light water reactors6 
(CASL). 

The analysis of a fuel rod undergoing a power 
transient is considered, and 3 input variables are selected 
for the calculation of the limit surface, namely, fuel grain 
radius, rod linear power, and fuel thermal expansion 
coefficient. 

The limit surface sought in this work is the 3-
dimensional surface in the parametric input space, 
identified by the values of the above input variables for 
which the maximum Von Mises stress in the clad does not 
exceed an imposed threshold. The search of the limit 
surface (aka reliability surface) location could be very 
computationally expensive; for this reason, RAVEN 
provides the capability to spoon several BISON runs in 
parallel and accelerate the search of the limit surface by 
means of Support Vector Machines (SVM). SVMs are a 
class of artificial intelligence algorithms mostly used as 
classifiers (forecast Boolean outcomes). Few initial runs 
of BISON are used to train the SVM algorithm that is 
used to forecast which regions of the parametric input 
space are inside/outside the reliability surface. This 
forecast is used to decide where further exploration of the 
input space is needed. The search stops when the 
exploration of additional points of the input space will not 
lead to changes in the location of the limit surface.  

Once the limit surface is found, RAVEN will 
compute the probability of exceeding the maximum Von 
Mises stress by performing an integral of the volume 
surrounded by the input space weighted by the probability 
associated to the value of the input parameters. The limit 
surface so obtained will be also used to help the 
interpretation of the physical phenomena relating the 
input space and the max Von Mises stress in the clad. 

 
I. LIMIT/REALIABILITY SURFACE 
I.A. Limit Surface Definition 

 
Let’s consider a system, which could be represented 

in the phase space by: 
𝑦 = 𝐻 𝑥, 𝑡, 𝑝                             (1) 

Where 𝑦 is the coordinate representing the system in 
the phase space, and 𝑥, 𝑡, 𝑝  are the independent 
variables that have been separated in spatial, temporal and 
parameters independent variables, respectively, (𝑥, 𝑡, 𝑝). 
The distinction between 𝑥, 𝑡, 𝑝  is based solely on 
engineering considerations, while no mathematical 
differentiation exists . 



Now it is possible to introduce the failure function, 𝐺. 
𝐺 is a Boolean function that – based on the values of the 
system phase space coordinate, time, spatial coordinate, 
and possible system parameters – has either the value 0 to 
indicate system properly functioning and 1 for system 
failure: 
𝐺 =   𝐺 𝑦, 𝑥, 𝑡, 𝑝 = 𝐺 𝐻 𝑥, 𝑡, 𝑝 , 𝑥, 𝑡, 𝑝 = 𝐺 𝑥, 𝑡, 𝑝  

For simplicity it is possible to assume, without loss of 
generality, that 𝐹  is time independent (e.g. 𝐺 =

𝑑𝑡𝑓!!"#
!!

𝑥, 𝑡, 𝑝 ).  
𝐺 =   𝐺 𝑥, 𝑝                                 (2) 

Now, two more hypotheses are needed to properly 
introduce the concept of limit surface. 

First, the equation describing the time evolution of 
probability density function of the system coordinate in 
the phase space is of type Liouville, which allows 
ensuring that all the stochastic behaviors of the system are 
representable as probability distribution function in the 
input space. A heurist analysis of such condition is 
reported in reference 7 while the process of how the phase 
space could be expanded to accomplish such condition is 
reported in reference 8. This allows combining the 
parametric space with the initial condition space: 

𝑥 ← 𝑥, 𝑝  
𝐺 𝑥 ← 𝐺 𝑥, 𝑝                              (3) 

Second, the function describing the system 𝐻 𝑥, 𝑡  
should satisfy certain regularity requirement. 

While the second condition is practically always true 
for the physical systems the first condition could be 
violated in a very specific set of problems as illustrated in 
reference 8, but usually not relevant for the fuel reliability 
analysis. 

Under the above simplifications it is possible to 
identify the region of the input space (𝑉) leading to a 
specific outcome of the goal function. In particular we can 
define the failure region 𝑉!  as the region of the input 
space where 𝐺 = 1, more spefically: 

𝑉! = ∀𝑥|𝐺 𝑥 = 1                            (4) 
The definition of the complementary of the failure 

region is of course: 
𝑉!! = ∀𝑥|𝐺 𝑥 = 0                            (5) 

Its boundary is the sought limit surface: 
𝐿! = 𝜕𝑉! = 𝜕 ∀𝑥|𝐺 𝑥 = 1  

It is worth mentioning that 𝑉!  could be a disjoint 
subset of 𝑉, and unless both 𝑉! and its complementary are 
not disjoint sets 𝐿! is also a disjoint set. 
 
I.A. Property of the Limit Surface 

 
Clearly, determining the location of the limit surface 

corresponds to the capability to identify bounding regions 
for which the system will not exceed the operative limit. 

The location of the limit surface is important for 
design optimization but could also be used to extract more 
information to characterize the behavior of the system 

from a probabilistic standpoint. For the moment lets 
assume that all the input space is subject to probabilistic 
behavior (in case some variable are not, the following 
derivation should be limited to only the ones that are). To 
be more exact let be 𝑥 ∈ 𝑉 and 𝑥~𝑋 (i.e. 𝑥 is the random 
variate realization of the random variable 𝑋). 

If 𝑓! 𝑥  is the probability distribution function (pdf) 
of 𝑋  the failure probability of the system or the 
probability of exceeding the operative limits (𝑃!) is: 

𝑃! = 𝑑𝑥𝐺 𝑥 𝑓! 𝑥! = 𝑑𝑥𝐺 𝑥 𝑓! 𝑥!!!𝑉𝐹
𝑐    (6) 

By the definition of the 𝑉! and 𝑉!! sets: 
𝑃! = 𝑑𝑥𝑓! 𝑥!!

                         (7) 
To summarize, the failure probability of the system is 

equal to the probability of being in the input space leading 
to a possible failure pattern that is also equal to the 
volume, probability weighted, surrounded by the limit 
surface. 

To exemplify the concept, an example could be 
helpful. Lets consider the following input space: 
• ℎ!: level of the Von Mises stress for which the clad 

would fail 
• 𝑝: power scaling factor  

And the corresponding cumulative distribution 
functions: 

ℎ!~𝑓!! ℎ! =

= 0  𝑖𝑓  ℎ! < ℎ!!"#

= !
!!!"#!!!!"#

= 0  𝑖𝑓  ℎ! > ℎ!!"#

                  (8) 

𝑝~𝑓! 𝑝 =

= 0  𝑖𝑓  𝑝 < 𝑝!"#
= !

!!"#!!!"#

= 0  𝑖𝑓  𝑝 > 𝑝!"#

                  (9) 

Assuming that the Von Mises stress (ℎ) is a linear 
function of the power (just to illustrate the integration 
domain in a simple case): 

ℎ = ℎ! + 𝛼𝑝                               (10) 
To further specify the case (otherwise several 

alternative would be possible): 
ℎ!!"# > ℎ! + 𝛼𝑝!"# 
ℎ!!"# < ℎ! + 𝛼𝑝!"#                      (11) 

The limit surface, failure region, and active part of 
the failure region (failure region with non zero 
probability) are illustrated in figure 1 (in agreement with 
the above assumptions): 

In this simplified case the failure probability could be 
evaluated as it follows: 
𝑃! = 𝑑𝑥𝑓! 𝑥!!

=          𝑑ℎ!𝑓!! ℎ! 𝑑𝑝!!
!!!!!

!

!!
! 𝑓! 𝑝             

(12) 
The integral domain could be restrain to the areas 

with not zero contribution: 
𝑃! = 𝑑ℎ!

!
!!!"#!!!!"#

𝑑𝑝!!"#
!!!!!

!

!!!"#
!!!"#

!
!!"#!!!"#

  



𝑃! =
! !!!"#!!! ! !!!"#!!!!"#

!! !!"#!!!"#
             (13) 

While the analytical solution carries low importance 
per se, this simple example is useful to grasp how the 
limit surface is defined in a practical case and how the 
hyper-volume should be properly weighted by the 
probability in the input space. 

 

 
Figure 1: Limit surface and active integration domain. 
 
I. NUMERICAL SEARCH OF THE LIMIT 
SURFACE 

 
II.A. Numerical Representation of The Limit Surface 

 
Similarly to every numerical process the location of 

the limit surface would be known given a certain 
tolerance derived from its numerical representation. The 
tolerance is given by the grid that is used to locate the 
limit surface. To simplify the explanation, lets assume 
that each of the N dimensions of the input space is 
discretized with the same number of equally spaced point 
M. The Cartesian grid so built has therefore MN points 
and each point is uniquely characterized by the vector 
index 𝚥 = 𝑗!,… , 𝑗! ,… , 𝑗!  with 𝑗! ≤ 𝑀∀𝑖 , and for each 
dimension is defined the ℎ! step size. Assuming that the 
goal function 𝐺 𝑥  is known on each point of the grid, 
and a zero-th order approximation is used the 
approximation of the goal function could be written as: 

𝐺 𝑥 = 𝜃! 𝑥 𝐺 𝑥!!
!!!                   (14) 

Where 𝜃! is the characteristic function of the hyper-
volume surrounding the point 𝑥!: 

𝜃! 𝑥 =
1, 𝑖𝑓  𝑥 ∈ 𝑥!! −

ℎ!
2 , 𝑥!! +

ℎ!
2

!
!!!

0, 𝑖𝑓  𝑥 ∉ 𝑥!! −
ℎ!
2 , 𝑥!! +

ℎ!
2

!
!!!

 (15) 

𝐼 is the vector 1,… ,1 , and 𝑀 = 𝑀,… ,𝑀  
Same approximation is used to represent the 

probability of the parameters in the input space: 

𝑓! 𝑥 = 𝜃! 𝑥 𝑓! 𝑥!!
!!!                  (16) 

Using the above-described approximations the failure 
probability could be expressed as: 

𝑃! = ℎ!!
!!! 𝑓! 𝑥! 𝐺 𝑥!!

!!!          (17) 
The formula needs proper adjustment to account for 

the edges of the grid where the weight it is not anymore 
the full hyper-volume ℎ!!

!!!  but needs to be reduced to 
account for the half size cells. 

A question that has not yet been addressed is the 
accuracy of this approach. Unfortunately the goal function 
and in some cases also the probability distribution 
functions are discontinuous and therefore an estimation of 
the asymptotic error bound is not easily achievable by 
using higher order Taylor expansions. 

Under some assumption the following derivation 
could be used to seek some error bounds for the accuracy 
of the probability integral.  

Firstly, it is needed to exclude the case of discrete 
parameters in the input space, second, when considering 
truncated distributions the grid should be constructed such 
as the discontinuous points lay on the edges of the grid.  

These choices bring the definition of the active 
contribution hyper-volume directly into the definition of 
the integration space eliminating the need to account for 
possible discontinuities in the probability distribution 
functions. If the region of the input space limited to the 
support of the distribution functions of the input 
parameters is defined as the active hyper-space (𝑉!) the 
following holds: 

 
𝑃! = 𝑑𝑥𝐺 𝑥 𝑓! 𝑥! =

𝑑𝑥𝐺 𝑥 𝜃! 𝑥 𝑓! 𝑥! + !!!
!!! !!

𝑥! −!
!!!

!
!!!!!

𝑥!!   

 
𝑃! =

𝑑𝑥𝐺 𝑥 𝑓! 𝑥! + !!!
!!! !!

𝑥! − 𝑥!!
!
!!!

!!!!/!
!!!!/!

!
!!!

!!∈!!

  

(18) 
Now it will be useful to split the point of the grid, 

already in the active part of the domain, between the ones 
having at least neighbor with a different value of the goal 
function (𝑉! ∩ 𝑉!!!), the ones in the active domain with 
zero value of the goal function and surrounded by point 
with the same value of the goal function 𝑉! ∩ 𝑉! 𝑥 =0, 
and the points in the active domain with value of one of 
the goal function and surrounded by point with the same 
value of the goal function 𝑉! ∩ 𝑉! 𝑥 =1 

Now the two following relationships hold: 
 

Power&&

Limit&Surface&

fp≠0&

fhF≠0&

Failure&region&

Ac5ve&
contribu5on&

hfmax&

hfmin&

pmin& pmax&

Failure&
Hoop&Stress&



𝑑𝑥𝐺 𝑥 𝑓! 𝑥!
!!!!/!

!!!!/!

!

!!!
!!∈!!∩!! 𝑥 =0

+
𝜕𝑓!
𝜕𝑥! !!

𝑥! − 𝑥!!

!

!!!

= 0 

𝑑𝑥𝐺 𝑥 𝑓! 𝑥! +!!!!/!
!!!!/!

!
!!!

!!∈!!∩!! 𝑥 =1

!!!
!!! !!

𝑥! − 𝑥!!
!
!!! =

𝑑𝑥 𝑓! 𝑥! + !!!
!!! !!

𝑥! −!
!!!

!!!!/!
!!!!/!

!
!!!

!!∈!!∩!! 𝑥 =1

𝑥!!       (19) 

 
Consequently: 
𝑃! = ℎ!!

!!! 𝑓! 𝑥!!
!!!

!!∈!!∩!! 𝑥 =1

+ 𝑂 ℎ!!! +

𝑑𝑥𝐺 𝑥 𝑓! 𝑥! + !!!
!!! !!

𝑥! −!
!!!

!!!!/!
!!!!/!

!
!!!

!!∈!!∩!!!!

𝑥!!       (20) 

 
It is unfortunate that the second summation is a 

𝑂 ℎ!  given the fact that the discontinuity of 𝐺 𝑥  does 
not allow the Taylor expansion to converge consequently 
in a worst-case scenario analysis: 

𝑃! = ℎ!!
!!! 𝑓! 𝑥!!

!!!
!!∈!!∩!! 𝑥 =1

+ 𝑂 ℎ!!! +

𝑂 ℎ! ≈ 𝑂 ℎ!      (21) 
concluding that the process could be completely 

undetermined. In reality this is not true if  
ℎ!!

!!! 𝑓! 𝑥!!
!!!

!!∈!!∩!! 𝑥 =1

≫

𝑑𝑥𝑓! 𝑥!
!!!!/!
!!!!/!

!
!!!

!!∈!!∩!!!!

   (22) 

This condition is satisfied when the volume to 
surface ratio is in favor of the volume and when the 
probability distribution function is not strongly peaked 
around the limit surface. 

Actually to take advantage of the last observation the 
grid is built in the probability transformed space. In this 
space the measure 𝑑𝑥 is replaced by 𝑑𝜇 = 𝑓!𝑑𝑥. 

The equally spaced grid, in the new metrics, 
corresponds to a grid where the distance between the 
points is equally spaced in probability. The advantage of 
this approach is that the last inequality is reduced to the 
condition: 
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑔𝑟𝑖𝑑  𝑝𝑜𝑖𝑛𝑡  𝑜𝑛  𝑡ℎ𝑒  𝑓𝑎𝑖𝑙𝑢𝑟𝑒  𝑟𝑒𝑔𝑖𝑜𝑛
≫ 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑜𝑖𝑛𝑡  𝑜𝑛  𝑡ℎ𝑒  𝑓𝑎𝑖𝑙𝑢𝑟𝑒  𝑟𝑒𝑔𝑖𝑜𝑛  𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 

In conclusion, when using the equally probability 
spaced grid the error is bounded by the amount of 
probability contained in each grid cell times the number 
of cell on the frontier of the limit surface. It is worth to 
notice that given that the integral of the probability on the 
full domain of the input space is always one the 
probability content per computational cell is: 

𝑃! =
!
!!   (23) 

Figure 2 illustrates how the point on regular grid in 
value or in probability will differ. The blue dots are the 
location of the grid nodes. The Variable_LN uses an 
equally spaced grid in value and its probability 
distribution function is a LogNormal. The Variable_N 
uses an equally probability spacing approach using a 
normal distribution as weighting function. In this case in 
the Z axis it is reported the product of the two 
probabilities. 

 
Figure 2: Comparison of equally value and equally 
spaced grid points. 

 
II.B. Acceleration of the Limit Surface Search 

 
So far it has been determined the meaning, and the 

possible numerical approximation of the limit surface but 
its search still remains an open challenge. 

Each evaluation of the goal function in one of the 
grid point implies the evaluation of the BISON code (or 
any other) for a set of entry in the input space. Each 
BISON run could take several hours and, even if RAVEN 
would handle the parallel sampling of the grid points, the 
number of runs needed could be in the thousands to 
contain the error and this could turn out to be too 
computationally expensive. This process is accelerated by 
means of usage of supervised learning algorithms. 

A supervised learning algorithm, in short and in our 
context, is a set of equations which parameters could be 
‘trained’ so to reproduce with a certain amount of 
confidence the response (output) of a much more complex 
system of equation modeling a physical system (in or case 



BISON). The output that the supervised learned algorithm 
tries to reproduce is the value of the goal function. Being 
this type of output a Boolean value, a sub class of 
supervised learning algorithms are used that are usually 
referred to as classifiers. 

RAVEN has several different types of classifiers. The 
most successfully tested during these scoping studies 
where the Support Vector Machines (SVM) with radial 
basis function based kernels. 

What RAVEN implements is, in reality, what is 
commonly referred to as a active learning process which 
ultimate results is the training of a classifiers capable to 
predict the outcome of the goal function for any given 
point of the input space. 

In an active learning process a supervised learning 
algorithm is combined with a criteria to choose the next 
point of the input space to explore using the complex 
physical model. This process is repeated until, under a 
proper metric, the prediction capabilities of the supervised 
learning algorithm will not improve by adding further 
training points. 

In more detail the iterative scheme could be so 
described: 
1. Generation of a set of point in the input space and 

computation of the corresponding goal function 
value. This constitutes what is usually referred to as 
the initial training set 

𝑥! , 𝑘 = 1,… , 𝑠𝑖𝑧𝑒  𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔  𝑠𝑒𝑡 
𝐺! = 𝐺! 𝑥! , 𝑘 = 1,… , 𝑠𝑖𝑧𝑒  𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔  𝑠𝑒𝑡 

 
2. The pairs 𝑥!,𝐺!   !  are used to train the SVM 

(𝐺 = 𝐺 𝑥 ) 
3. The SVM is evaluated on each point of the grid 𝚥 

leading to the determination of 𝐺  !, 𝑓𝑜𝑟    𝚥 =
𝐼,… , 𝑀,… ,𝑀  

4. The values of 𝐺  ! are used to determine the predicted 
location of the limit surface 

5. A new point is chosen to be added to the training set 
and a new pair is generated and added to the training 
set. The algorithm for the choose of the next point is 
explained in the next sections 

6. The procedure is repeated starting from point 3 until 
convergence is achieved. The convergence is 
achieved when there is no changes in the location of 
the limit surface between a certain number of 
consecutive iteration 
A final remark on the limit surface searching 

algorithm is about the requirement of location stability  
for more than two consecutive iterations. The reason for 
this choice is determine by the attempt to limit the effect 
of the build of non-linear bias in the searching pattern. In 
fact as it will be explained in the next paragraph the 
searching algorithm might focus too intensively on certain 
region of the limit surface while putting too few point in 

other zones and completely hiding undiscovered 
topological features of the limit surface. 

Another concern that will need to be addressed in the 
future is the impact of the convergence test on the 
projection of the limit surface obtained by surrogate 
model. In fact when the stability of the limit surface is 
tested in reality what is tested is the stability of the 
prediction of the surrogate model, which is equivalent to 
the projection of the original problem into a lover 
dimensional one. Most of the time practically all the 
points located on the limit surface are tested if a 
reasonably large number is used for the persistence test 
(few tens) and therefore in this case the convergence test 
on the limit surface succeed only when the location within 
the tolerance of the grid, is exact. 

 
I.B.1. Selection of the next training point 

The natural choice for the selection of the next point 
to be explored is given by the point already predicted as 
being part of the limit surface. This is a direct 
consequence of choosing, as convergence criteria, the 
stability of the location of the limit surface. 

Among the points located on the limit surface two 
competing criteria are used. The point on the limit surface 
are ranked based on the distance from the closest training 
point already explored (the larger is the distance the 
higher is the score for the candidate point), and based on 
its persistence (the larger is the number of time the 
prediction of the goal function for that point have changed 
the higher is the score). 

The two competing ranking system are combined as 
it follows (z is the iteration index): 

𝑆𝑐𝑜𝑟𝑒 !,! =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑐𝑙𝑜𝑠𝑒𝑠𝑡
𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔  𝑝𝑜𝑖𝑛𝑡 ∗

1
𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒!

 

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒 !,!!! =

𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒! +
1  𝑖𝑓  𝐺! 𝑥! = 𝐺!!! 𝑥!
0  𝑖𝑓  𝐺! 𝑥! ≠ 𝐺!!! 𝑥!

  (24) 

Since this approach creates a set of prioritized 
candidates could be used also in the parallel 
implementation of the searching algorithm. When several 
training point re run in parallel, it could happen that the 
evaluation of one additional point does not alter 
substantially the location of the limit surface. 
Consequently the new candidate with the highest score is 
being already submitted for evaluation, just its 
computation has not being yet completed. In this case, to 
avoid to submit two time the same evaluation point the 
code unsure that the point has not yet been selected and in 
case moves down along the point ranking until it finds a 
point that has not been explored yet. In the unlikely case 
that all possible point on the limit surface have been 
explored or submitted for evaluation the code will use a 
Monte Carlo sampling strategy to pick the next point. 

 
 



III. EXAMPLE 
 

III.A. BISON Test Case Description 
 
The case examined is a simplified axis-symmetric 

LWR fuel rodlet, composed by ten UO2 pellet, Zr-4 
cladding, gap and upper plenum. The problem is power 
rump up transient in which the linear power changes 
according to Table 1. The fully detailed description of the 
case geometry could be found in section 3.1. 

 
TABLE I. Linear Power Time Evolution 
Time (s) Linear Power (W/m) 
0 0 
10000 3.50E+04 
150000000 3.50E+04 

 
What has been investigated is the maximum Von 

Mises Stress dependence from three input parameters. 
The input parameters and their assumed probabilistic 

distribution is given in table 2. 
 

TABLE II. Probabilistic Input Description 
Variable Distribution Min Max 
Grain Radius Uniform 0.4 1.5 
Fuel Thermal 
Expansion 
Coefficient 

Uniform 9E-6 1.1E-5 

Linear Power 
Scaling Factor 

Uniform 0.95 1.05 

 
III.B. BISON Test Case Results 
III.B.1. Parametric studies 

To perform parametric studies the most natural 
exploration techniques of the input space is the grid-based 
exploration. In the case here analyzed the grid chosen was 
a equally probability spaced grid with 21 points by 
dimension leading to a total of 9261 sampling point. 

Figure 3 to 5 illustrate the maximum Von Mises 
stress as a function of the input variable sampled. From 
the 4-D figures (Figure 3 and 4) it is possible to 
appreciate the overall behavior of the stress. The two 
figures differ with respect the variable that is used in the 
fourth dimension and leading to multiple value of the max 
Von Mises stress for the same point in the input space. 
Figure 5 represent instead a projection where all the input 
variables have been eliminated except the initial grain 
radius. The figure reveals the existence of a non linear 
relationship between the grain radius and the max Von 
Mises stress, that happens (comparing also figure 4) at 
higher levels of power. 

The relative impact of the different input parameters 
toward the maximum Von Mises stress could be aided by 
the knowledge of the sensitivity coefficients. Sensitivity 

coefficients are simply the derivative of the figure of 
merit (max Von Mises stress) with respect the input 
parameters. Table III reports such coefficients computed 
by RAVEN using a linear regressor on the values 
computed on the grid points. 

 
 

 
Figure 3: Max Von Mises stress as a function of the 
initial grain radius, and the fuel thermal expansion 
coefficient (hidden variable power scaling factor). 
 

 
Figure 4: Max Von Mises stress as a function of the 
power scaling factor and initial grain radius (hidden 
variable fuel thermal expansion coefficient). 
 

 
Figure 5: Max Von Mises stress as a function of the 
initial grain radius (hidden variables fuel thermal 
expansion coefficient and power scaling factor). 
 
 
 
 
 



 TABLE III. Sensitivity Coefficients 
 

Input Max Von Mises 
Stress 

Power Scaling 
Coefficient 

138596387 

Grain Radius Scaling 
Coefficient 

-20106223.4 

Thermal Expansion 
Coefficient 

-2762537190000 

  
 

III.B.2. Limit Surface Analysis 
As already mentioned the limit surface search has 

been accelerated by means of an SVM with a radial basis 
function kernel. The grid has been build in probability 
requiring that each grid cell have a probability content of 
10-5 this is equivalent to generate an equally spaced grid 
(using uniform distribution) lead to grid that are both 
equally spaced in value and equally spaced in probability 
with 10!!! ~47 cell by input variable. The parameters 
used for the setting of the SVM and its kernel where 
rather standards: gamma=0.1, tolerance =0.01, and 
penalty factor C=10. Gamma express how strong is the 
influence of close by training points versus the one far 
away (the largest is gamma the stronger are the closest 
point) in determining the prediction, tolerance set the 
convergence criteria for the iterative search of the SVM 
parameters, and C is a smoothing penalty function to de-
noise the data. Of course more information and more 
specific reference could be found in the scikit learn 
manual9. 

Figure 6 shows with respect the point sampled by the 
grid approach the location of the point sampled by the 
adaptive search of the limit surface and figure 7 shows the 
limit surface location. The limit surface is searched such 
as the maximum Von Mises stress does not exceed the 
value of 1.05e8. The corresponding failure probability 
computed was 5.1875E-02. 

It is interesting to note that the limit surface slope 
confirm the signs of the sensitivity coefficient previously 
computed. 

 
Figure 6: Points sampled by the adaptive algorithm 
(dots) vs. the grid based sampling (crosses). 

 
Figure 7: Limit surface location, in blue the side in the 
failure region, in red the side in the safe region. 
 
 
IV. CONCLUSIONS 

 
An initial demonstration of the potential of the 

RAVEN probabilistic analysis code to help the design 
process and reliability analysis of the nuclear fuel has 
been presented in this paper. In particular, RAVEN has 
been coupled to the BISON fuel performance code, and a 
demonstrative evaluation of the fuel rod failure 
probability analysis using the concept of a limit surface 
has been performed. The paper presented an extensive 
mathematical description of the limit surface concept and 
of its mathematical representation. There are several 
issues that need to be further investigated, in particular 
concerning the error bounds in the representation of the 
limit surface and the impact of usage of surrogate models 
on the overall estimation error. In spite of these 
challenges, the methodology here presented has strong 
potential to become a valuable tool for improved fuel 
design and better understanding of operative margins in 
current reactors. In fact, given the stochastic nature and 
the uncertainty associated with some aspects of nuclear 
fuel analysis, it is thought that a probabilistic approach 
can enhance fuel performance and safety evaluations. 
Currently, efforts are ongoing to accelerate the limit 
surface search and perform inline error control. These 
new developments are intended to lead to a wider 
deployment of this approach to the point to positively 
impact the common practice. 
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