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INTRODUCTION  
The Risk-Informed Safety Margin Characterization 

(RISMC) [1] Pathway (as part of the Light Water 
Sustainability (LWRS) Program [2]) aims to develop 
simulation-based tools and methods to assess risks for 
existing Nuclear Power Plants (NPPs). 

This Pathway, by developing new methods, is 
extending the Probabilistic Risk assessment (PRA) state-
of-the-practice methods [3] which have been traditionally 
based on logic structures such as Event-Trees (ETs) and 
Fault-Trees (FTs) [4]. In more detail, the RISMC 
approach uses stochastic frameworks (i.e., RAVEN [5]) 
coupled with deterministic codes that model specific 
physical aspects of the plant (e.g., thermo-hydraulic and 
thermo-mechanic using RELAP5-3D [6] or RELAP-7 [7], 
and GRIZZLY [8] respectively). 

One research direction is use of surrogate models, 
also known as Reduced Order Models (ROMs), as 
possible substitutes for one or more of the needed 
physical aspects. The use of ROMs can greatly reduce the 
computational cost of a single multi-physics simulation 
run. This advantage is relevant when many simulation 
runs need to be performed according to the desired 
stochastic analysis (usually through a stochastic sampling 
process). 

 
RISMC APPROACH 

A single simulator run can be represented as a single 
trajectory in the phase space. The evolution of such a 
trajectory in the phase space can be described as follows: 

𝜕𝜽 𝑡
𝜕𝑡

=𝓗 𝜽, 𝒔, 𝑡  (1) 

where: 
• 𝜽 = 𝜽(𝑡) represents the status of the system as a 

function of time t, i.e., 𝜽(𝑡) represents a single 
simulation  

• 𝓗 is the actual simulator code that describes how 𝜽 
evolves in time 

• 𝒔 = 𝒔(𝑡) represents the status of components and 
systems of the simulator (e.g., status of emergency core 
cooling system, AC system) 

By using the RISMC approach, the PRA analysis is 
performed by: 

1. Associating a probabilistic distribution function (pdf) 
to the set of parameters 𝒔 (e.g., timing of events) 

2. Performing stochastic sampling of the pdfs defined in 
Step 1 

3. Performing a simulation run given 𝒔 sampled in Step 
2, i.e., solve Eq. (1) 

4. Repeating Steps 2 and 3 M times and evaluating user 
defined stochastic parameters such CD probability 
(𝑃!"). 

 
RAVEN FRAMEWORK 

In order to perform PRA analyses of NPPs, the 
RISMC pathway is employing the RAVEN statistical 
framework, which is a recent add-on of the RAVEN 
package [9] that allows the user to perform generic 
statistical analysis. By statistical analysis we include: 
sampling of codes (e.g., Monte-Carlo [10] and Latin 
Hypercube Sampling [11], grid sampling, and Dynamic 
Event Tree [12]), generation of ROMs [13] (also known 
as surrogate models or emulators) and post-processing of 
the sampled data and generation of statistical parameters 
(e.g., mean, variance, covariance matrix). 

 

 
Fig. 1. Overview of the RAVEN statistical framework. 
 

Figure 1 shows an overview of the elements that 
comprise the RAVEN statistical framework: 
• Model: represents the pipeline between the input and 

output spaces. It is comprised of both interfaces for 
mechanistic codes (e.g., RELAP5-3D and RELAP-7) 
and ROMs 



• Sampler: the driver for any specific sampling strategy 
(e.g., Monte-Carlo, Latin Hypercube Sampling, 
Dynamic Event Tree) 

• Database: the data storing entity 

• Post-processing: module that performs statistical 
analyses and visualizes results 

RAVEN is interfaced with several codes and, 
actually, the users can build their own interfaces for the 
code they are interested in.  

The interface for RELAP5-3D allows RAVEN to 
change specific values of any card contained in the 
RELAP5-3D input files according to the chosen sampling 
strategy. 

In addition, at the end of each RELAP5-3D 
simulation run, RAVEN collects and stores all 
information generated from the output files (in the 
Database manager), it generates CSV files of the output 
data, and it processes such data through its internal Post-
Processing and Data Mining module. 

If multiple simulations need to be run, RAVEN has 
the capability to run simulations in parallel on multiple 
nodes and/or multiple CPUs. RAVEN applicability ranges 
from Linux based desktop/laptop to high performance 
computing machines. 

As mentioned earlier, RAVEN has also the capability 
to “train” ROMs from any data set generated by any code. 
These ROMs are usually a blend of interpolation and 
regression algorithms and such “training process” 
basically consists of setting the optimal parameters of the 
interpolation and regression algorithms that best fit the 
input data set. Once the ROMs are generated, they can be 
used instead of the actual codes to perform any type of 
analysis since the generation of data from ROMs is much 
faster than the original code.  
 
SURROGATE MODELS 

A ROM is a mathematical model that aims to build a 
correlation given a set of data points. The starting point is 
typically a set of 𝑁 data points: 

(𝒔𝒊,𝓗(𝒔𝒊))     𝑖 = 1,… ,𝑁 (2) 

that samples the response of the original model. Given the 
set of these 𝑁 data points, the ROM is trained and the 
resulting outcome is a model 𝚯(𝒔) that approximates the 
original model 𝓗(𝒔)(see Figure 2):  

𝚯 𝒔 : 𝒔𝒊 → 𝚯(𝒔𝒊) ≅𝓗(𝒔𝒊) (3) 

The advantage is the much faster computation of 
𝚯(𝒔) (e.g., RELAP) compared to the original model 
𝓗(𝒔). However, the evaluation of a ROM is affected by 
an intrinsic error which can not be bound and/or 
quantified. 

We have identified two classes of ROM: model based 
and data based. These two classes are described in the 
next two sections. 

 

Model Based ROMs 
In model based ROMs the prediction is performed 

using a blend of interpolation and regression algorithms. 
Examples are: 
• Gaussian Process Models (GPMs) 

• Multi-dimensional spline interpolators 

This class of algorithms has the advantage that they 
possess great prediction capabilities if the original 𝓗(𝒔) 
is relatively smooth (i.e., no discontinuous). 

 
Fig. 2. Example of reduced order modeling approximation 
of a sampled 3-D response surface. 
 
Data Based ROMs 

In data based ROMs the prediction is performed by 
solely considering the input data by using data searching 
algorithms. Examples are: 
• K nearest neighbor classifier (KNN) 

• Graph based models 

While the predictions of this class of ROMs is limited 
compared to model based ROMs, they have the advantage 
that they are able to handle very discontinuous 𝓗(𝒔). 
 
APPLICATIONS 

For the scope of this article we have identified two 
possible applications of ROMs. These two applications 
are described in detail in the next two subsections. 

 
Accelerator for stochastic analysis 

For simulation-based safety applications, we aim to 
understand how a safety related parameter (e.g., 
maximum clad temperature) is affected by the timing and 
sequencing of events (e.g., recovery of AC power) or the 
uncertainties associated with characteristic parameters of 
the simulation. As an example, 𝚯(𝒔) is used to reduce the 
number of samples in a Monte-Carlo analysis through 
adaptive sampling [14,15].  

The scope is to determine the system failure 
probability by randomly sampling 𝒔 and simulating 
system behavior (e.g., maximum clad temperature). 
Failure probability 𝑝! is calculated as the ratio of the 
number of simulations that lead to failure over the total 
number of simulations performed. Since 𝑝! might be very 
small, a large number of computationally expensive 
simulations may be required.  

(!!,!(!!)) 
!(!) !(!) 



Adaptive sampling infers, from a set of training 
simulations, regions that lead to failure (maximum clad 
temperature greater than failing temperature) and 
concentrates samples on those regions. 

Note that the evaluation of 𝚯(𝒔) for a new 
𝒔 ≠ 𝒔!    𝑖 = 1,… ,𝑁  is much less computationally 
intensive then simulating the exact value  𝓗(𝒔). This is in 
particularly true when the evaluation of 𝓗(𝒔) can take 
hours or days. Prediction capabilities lie within the ability 
to determine system outcomes (e.g., max clad 
temperature) in a much faster way than real-time. 

 

 
Fig. 3. Limit surface (black line) obtained for a simplified 
PWR system for a SBO scenario after 10 (top) and 60 
(bottom) samples [14]. Uncertainty associated to the 
computed limit surface is indicated by the green and blue 
lines. 
 
Prediction Models: Temporal emulators 

In the previous section we introduced the concept of 
response surface methods and ROMs as tools to predict 
an approximated 𝚯(𝒔) (which represents, for example, a 
simulated system response under an accident scenario) for 
a set of conditions specified in 𝒔. The vector 𝒔 contains 
elements 𝑠!   such as timing and sequencing of events (e.g., 
recovery time of AC power, failure time of core cooling 
injection). Note that the value 𝚯(𝒔) is a scalar and, thus, 
does not contain any temporal evolution type of 
information.  

We extend the concept of ROM in order to be able to 
handle time dependent  𝚯(𝒔): given 𝒔, 𝚯(𝒔, 𝑡) is a time 

dependent variable. In this case, the training consists of 𝑁 
points: 

𝒔! ,𝓗(𝒔, 𝑡)!         𝑖 = 1,… ,𝑁 (4) 

Our approach is to start by dividing the temporal 
scale into intervals (assumed here to be of equal length 
but it is not required): 

𝑡 = 𝑡!,… , 𝑡!  (5) 

For each time point 𝑡!  (𝑘 = 1,… ,𝑇) we consider the 
subset of points: 

𝒔! ,𝓗(𝒔, 𝑡!)!         𝑖 = 1,… ,𝑁 (6) 

and we build the corresponding 𝚯 𝒔 ! . Thus, now we 
have a set of ROMs  𝚯 𝒔 ! for each time point 
𝑡!  (𝑘 = 1,… ,𝑇). The temporal predictor Ψ 𝒙, 𝑡  is 
simply the vector of: 

Ψ 𝒙, 𝑡 = 𝚯 𝒔 !,… ,𝚯 𝒔 ! ,… ,𝚯 𝒔 !  (7) 

In our applications, when each of the data points has 
been generated by safety analysis codes (e.g., RELAP, 
MELCOR [16]): 
• 𝒔 is the configuration of the simulation (e.g., timing of 

events, values associated with uncertain parameters) 

• 𝚯(𝒔, 𝑡) is the simulation associated with 𝒔. 

We performed a few tests with different types of 
datasets in order to identify performances and limitations 
of this algorithm. Figure 4 (top) shows a set of 𝑛 = 20 
simulations, i.e. 𝓗(𝒔, 𝑡)!   (  𝑖 = 1,… , 20), generated by 
sampling two stochastic parameters, i.e. 𝒔! = 𝑠!, 𝑠! .  

We initially divided the time scale uniformly 
[0,2500] into 𝑇 = 100 intervals and for each time point 
𝑡!  (𝑘 = 1,… ,100) we considered the data points 
𝒙! ,𝓗(𝒔, 𝑡!)!      𝑖 = 1,… , 20  and built the ROMs 
𝚯 𝒔 !  .  

We then tested the temporal predictor: 

Ψ 𝒔, 𝑡 = 𝚯 𝒔 !,… ,𝚯 𝒔 !""  (8) 

for several 𝒔!   (𝑗 ≠ 𝑖) and compared them with the 
simulated 𝓗(𝒔, 𝑡) . 

Figure 4 (bottom) shows the predicted scenario 
Ψ 𝒔, 𝑡  (green line) and the actual simulated scenario 
𝓗(𝒔, 𝑡). For this particular case we built Ψ 𝒔, 𝑡  using 
Support Vector Machines [17] as basic ROM. A useful 
feature is that these algorithms are also capable of 
providing the uncertainty associated with the predicted 
results. 
 
CONCLUSIONS 

In this paper we have discussed possible applications 
of ROMs from a safety point of view. We have presented 
basic classes of ROMs that are available and their 
pros/cons. We have shown how it is possible to employ 
them to reduce the number of samples requires by a 
simulation based PRA (also know as dynamic PRA). 



Lastly we have extended the concept of ROM to 
temporal ROMs that can emulate completely the temporal 
behavior of a generic system simulator code. 
 

 
Fig. 4.  Example of predictited temporal profile (red line 
in the bottom figure) given a set of simulated scenarios 
(top figure). 
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