
Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Analysis of the Space Propulsion System Problem Using RAVEN

Diego Mandelli*, C. Smith, A. Alfonsi, C. Rabiti

Idaho National Laboratory, Idaho Falls (ID), USA

Abstract: This paper presents a solution of the space propulsion problem using a PRA code currently
under development at Idaho National Laboratory (INL). RAVEN (Risk Analysis and Virtual control
ENviroment) is a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows
dispatching different functionalities. It is designed to derive and actuate the control logic required to
simulate the plant control system and operator actions (guided procedures) and to perform both
Monte-Carlo sampling of randomly distributed events and Event Tree based analysis. In order to
facilitate the input/output handling, a Graphical User Interface and a post-processing data-mining
module are available. RAVEN also allows to interface with several numerical codes such as RELAP-
7, RELAP5-3D and ad-hoc system simulators. For the space propulsion system problem, an ad-hoc
simulator has been developed in Python and then interfaced to RAVEN. Such a simulator fully models
both the deterministic (e.g., system dynamics and interactions between system components) and the
stochastic behaviors (e.g., failures of components/systems such as distribution lines and thrusters).
Stochastic analysis is performed using random sampling based methodologies (i.e., Monte-Carlo).
Such analysis is accomplished in order to determine both the reliability of the space propulsion system
and to propagate the uncertainties associated with a specific set of parameters. As also indicated in the
scope of the benchmark problem, the results generated by the stochastic analysis are used to generate
risk-informed insights such as conditions under which different strategies can be followed.

Keywords: propulsion system, dynamic PRA, Monte-Carlo

* Corresponding author: Diego Mandelli, diego.mandelli@inl.gov

1 INTRODUCTION

For the PSAM12 conference, a benchmark problem was issued with the intent of gathering people
actively researching in the PRA field and have them work on the solution of a common problem. The
problem statement (see Section 2) was structured in such a way that its essential features would
challenge the capability of classical event-tree (ET) and fault-tree (FT) algorithms. In this respect, this
paper presents a solution to such problem. Complete system dynamics and full system features have
been implemented as an ad-hoc simulator code written in Python. Implementation details are provided
in Section 4. We used the code RAVEN [1,2] to perform the statistical analysis using its Monte-Carlo
sampling algorithms. RAVEN code description is shown in Section 3. Once the coupling between the
system simulator and RAVEN has been established, a set of Monte-Carlo runs [3] has been performed
in order to evaluate the temporal profile of system failure probability. Results are shown in Section 5.

2 BENCHMARK DESCRIPTION

An ion propulsion system is needed for a science mission in order to reach the orbit of a distant planet.
The system is pictured in Fig. 1 (left) and consists of the following components:

• 1 Tank
• 1 Set of Distribution Lines
• 5 Propulsion thrusters (Fig. 1 right), each composed of:

o 1 Propulsion Power Unit (PPU)
o 2 Ion Engines: A (main engine) and B (backup engine)
o 2 Valves

When a thruster is operating, the PPU provides power to just one ion engine. The other engine is in a
standby mode, unless failed. When the number of engines required is greater than the actual number of
engines available then the mission fails.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 1: Schematics of the propulsion system (left) and of a thruster (right): PPU, ion Engines and valves

The standby thrusters remain in standby until they are needed to replace a failed thruster, and they are
actuated in series. The strategy for thruster operation is to begin with:

• Power from the PPU going to Ion Engine A
• Open valve A (to provide propellant to the Ion Engine)
• Start Engine

Ion Engine A continues to be the operating engine of the thruster until the ion engine A fails. If engine
A fails, the strategy is to:

• Close valve of engine A
• Shut down the PPU
• Switch the PPU to Ion Engine B
• Open valve of engine B
• Re-energize the PPU and operate with Ion Engine B.

Strategy to shut down the thruster is to:
• Shut-down engine
• Close valve of the ion engine
• Shut down the PPU

Failure mode and effect analysis for all the components considered are shown in Table 1 along with
reliability data for PPU and Ion Engine.

Table 1: FEMA and failure mode probability values

Component Failure Mode Outcome Value

PPU

Fails to start on demand

Thruster failure

1×10-4 (per demand)
Failure to operate 1×10-6 (per hour)
Failure to shut down on demand 1×10-5 (per demand)
Fails to switch to Ion Engine B 2×10-6 (per demand)

Ion Engine
Fails to start on demand

Loss of redundancy
or thruster failure

3×10-5 (per demand)
Fails to operate 2×10-5 (per hour)
Fails to shut down on demand 3×10-6 (per demand)

Propellant
Valve

Failure to open on demand Loss of Engine See Section 2.2 Failure to close on demand Mission failure

2.1 Mission Profile

The phase mission is described schematically in Figure 2 that shows the time length of the mission
(78,000 hours) and the strategy regarding the number of thrusters needed in specific time intervals.
From Fig. 2 note:

• Support station: this station can be used to refuel and recover any damage and failure. After
stopping, all components are as good as new. Decision to stop at the support station can be
made anytime before 18,000 hours

• Gray region: this region represents an area that contributes to increase leakage failure rates of
the distribution lines (see Section 2.3) only when propulsion system is active.

Propellant**
tank*

Distribu1on*
lines*

Thruster*1*

Thruster*5*

Thruster*2*

Thruster*3*

Thruster*4*

Ion*Engine*A**

PPU*

Ion*Engine*B**

Propellant*inlet*
from*tank*

Valve*A*

Valve*B*

Ion$Engine$A$$

PPU$

Ion$Engine$B$$

Propellant$inlet$
from$tank$

ValveA

ValveB

Ion$Engine$A$$

PPU$

Ion$Engine$B$$

Propellant$inlet$
from$tank$

ValveA

ValveB

Ion$Engine$A$$

PPU$

Ion$Engine$B$$

Propellant$inlet$
from$tank$

ValveA

ValveB

Ion$Engine$A$$

PPU$

Ion$Engine$B$$

Propellant$inlet$
from$tank$

ValveA

ValveB

Ion$Engine$A$$

PPU$

Ion$Engine$B$$

Propellant$inlet$
from$tank$

ValveA

ValveB

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 2: Mission scenarios – Scenario 1: without stop at the support scenario (top) and

Scenario 2: with stop at the support scenario (bottom)

2.2 System Dynamics Interaction

The valve is subject to pressure shocks when the thruster is activated and deactivated. Following a
change of the status of the value there is a pressure oscillation ∆𝑃 around the nominal value with the
following expression (time 𝑡 in seconds):

∆𝑃 = 𝑠𝑖𝑛 𝑡𝜋/4 𝑠𝑖𝑛 𝑡𝜋/𝑝 𝑡 ∈ [0,4𝑠]
 0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (1)

where the parameter 𝑝 is uncertain and characterized by a symmetric triangle distribution [0.4,0.8].
Such oscillation causes a damage accumulation 𝑑 at each valve activation (either opening or closing)
that can be modelled as:

𝑑 = 𝑑𝑡 ∆𝑃
!

!
 (2)

The probability of failure on demand 𝑝!"#!$ of the valve as a function of the damage 𝑑 is as follows:

𝑝!"#!$ = (𝑒! − 5) ∙ 10!! (3)

Remember that if the valve fails to open, only the associated ion engine is lost; if the valve fails to
close, mission fails.

2.3 Leakages

Both distribution lines but and the fuel tank are subject to leakages and the failure rate for such events
are as follows:

• Distribution lines: the damage accumulation 𝐷(𝑡) of the distribution lines can be modeled as a
Gaussian random walk (Brownian motion) [4] having mean value (drift) equal to 1 and sigma
equal to 0.4. In the gray region (see Figure 2) and only when propulsion system is active (i.e.,
thrusters are running), damage accumulation for the distribution lines is still considered a
random walk but having mean value equal to 1.3 and sigma equal to 0.6.
Distribution lines fail when 𝐷 𝑡 = 80,000; when this happens the mission is lost. Note that,
for this benchmark extension, the leakage model for the distribution lines replaces the
reliability value reported in Table 2.

• Fuel tank: leakage failure rate = 10-5 hour -1. When a leakage event occurs in the fuel tank, the
rate r of fuel leaking out (in unit of fuel per hour) has been experimentally observed and
modeled as a Gaussian distribution characterized by:

Th

ru
st

er
s

N
ee

de
d

Time

Time

Th

ru
st

er
s

N
ee

de
d

2

3

3
28

00

52
00

78
00

0

38
00

0

50
00

0

69
00

0

54
00

0

69
00

0

38
00

0

18
00

0
12

00
0

28
00

0

78
00

0

18
00

0

31
00

0

Additional leakage failure rate

Support Station
Start

End

2

28
00

52
00

12
00

0

23
00

0
23

00
0

40
00

0
40

00
0

21
00

0

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

• Mean = 500
• Standard deviation = 100

Automatic repair system is available only for the fuel tank. Repair time is exponentially
distributed with a value of lambda 𝜆 = 24 hour.

Thus, the amount of fuel leaked is equal to the time needed for the repair multiplied by the rate of fuel
leaking out. Note that the size of the leakage and the time requited to fix such leakage determines how
much fuel has been lost and its contribution to reaching mission failure.

2.4 Initial Conditions Uncertainties

The minimum amount of fuel required for this mission is 110,000 units but an additional amount of
fuel is loaded. The additional amount is uncertain and can be modelled with a uniform distribution
between 5,500 and 16,500 units of fuel. Each working ion engine requires 1 unit of fuel each hour.

2.5 CCF Data

Common cause failures (CCF) should be assessed using the conditional probability values listed in
Table 1 by the CCF model of choice. No specific CCF model is endorsed, but any simplification or
approximation of CCF probabilities must be based on calculations using the values below.

Table 2: Common Cause Failure Modeling Values

Group Size Conditional Failure probability [%]

2 8.0
3 4.0
4 2.0

3 RAVEN CODE

RAVEN is a generic software driver to perform parametric and probabilistic analysis of code
simulating complex systems. Initially developed to provide dynamic risk analysis capabilities to the
RELAP-7 code, it is currently being generalized with the addition of Application Programming
Interfaces (APIs). These interfaces are used to extend RAVEN capabilities to any software as long as
all the parameters that need to be perturbed are accessible by inputs files or directly via python
interfaces. RAVEN is capable to investigate the system response probing the input space using Monte
Carlo, grid strategies, or Latin Hyper Cube schemes.
RAVEN has been developed in a highly modular and pluggable way in order to enable easy
integration of different programming languages (i.e., C++, Python) and coupling with other
applications including the ones based on MOOSE. The code consists of three main modules: Code
interface, External Python Manager and Graphical User Interface (GUI).
The interface is the container of all the tools needed to interact with codes such as RELAP-7/MOOSE,
RELAP5 and user defined codes (i.e., Python scripts). It has been designed to be general and
pluggable with different solvers simultaneously in order to allow an easier and faster development of
the control logic/PRA capabilities for multi physics applications.
The core of PRA analysis is contained in an external driver/manager. It consists of a Python
framework that contains the capabilities and interfaces to drive a PRA analysis.
The GUI is compatible with all the capabilities actually available in RAVEN. Its development is
performed using QtPy, which is a Python interface for a C++ based library (C++) for GUI
implementation. The GUI is based on a software named Peacock, which is a GUI interface for
MOOSE based applications and it is able to assist the user in the creation of the input.

3.1 Software Infrastructure

The external driver manager has the control of the different modules that support the DET calculation:

• General Calculation Driver and Job Handler

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

• Visualization and Input supporting GUI
• Dynamic Event Tree (DET) and Probability Engine
• Database manager
• Post-processing and Data Mining module
• Distribute Computing Environment Interface

The General Calculation Driver is in charge of communicating information among the different
modules. It is the only software branch that is aware of which modules are participating in the
calculation.

Figure 3: RAVEN code software structure

The Calculation Driver, through the Job Handler module, runs the simulator until a stopping condition
is reached. The probability engine is in charge of computing the likelihood of branching generated by
trigger signals (e.g. probability threshold on Clad Failure distribution overpassed).
The resulting data generated by the stochastic analysis, simulation probabilities, trigger information,
and simulation results are sent to the Database manager, that, based on the kind of information
received, distributes the data among the sub-structures (DET, PRA, Output databases). The database
manager is able to store data in different formats (e.g., HDF5, CSV, etc.).
The user can decide to perform post-processing operations and/or data mining manipulation on the fly,
through the Post-processing and data mining module. The whole calculation may be visualized
through the RAVEN GUI that is able to exploit the communication capabilities present in the external
calculation driver for following the simulation evolution (e.g., monitored variables or probability
evolution through different branches, etc.).
The whole calculation infrastructure is designed to be agnostic regarding the machine in which it is
running with extremely good performance either in PCs/workstations and HPC clusters.

4 RELIABILITY ANALYSIS

Scope of this benchmark is to 1) determine the time-dependent reliability of the propulsion system
over the planned mission and 2) identify and rank the most risk significant components. From a safety
point of view, mission failure occurs when one of the following conditions is satisfied before
𝑡 = 78,000:

1. Number of thruster available is less than the number of thruster required
2. Fuel tank empty
3. Distribution lines accumulated damage reach threshold value 𝐷 𝑡 = 80,000

In addition, it is needed to quantify the impact of support station on overall system reliability; a stop at
the support station:

• Allows to fully repair the propulsion system
• Increase distribution lines damage accumulation (see Fig. 2 bottom)

Database'Manager'
HDF5%Hierarchical%Storing%Structure%%

DET'
Database'

PRA'
Database'Output'

Database'

Interface'

Calcula9on'Driver'

Job'Handler''

Post@Processing''
&'

Data'Mining'Module'

Dynamic'Even'Tree''
&'

Probability'Engine'

CPU'Node''
N'

CPU'Node''
2'

CPU'Node''
1'

Code''
Run'N'

Code''
Run'2'

Code''
Run'1'

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

5 SYSTEM MODELING

In this section, we show how the most relevant features of the benchmark problems described in
Section 2 have been modeled and coded.

5.1 System Control Logic

The complete propulsion control logic has been implemented. For each of the following actions (that
have been coded in Python) a pseudo code is provided:

1. Start single thruster
Pseudo code 1: StartSingleThruster()

do
 thrusterToStart = FindFirst() # get a thruster on stand-by
 if valveFailsToOpen then
 LoseEngine(thrusterToStart)
 StartSingleThruster()
 else
 if PPUFailsToStart then
 LoseThruster(thrusterToStart)
 else
 if engineFailToStart then
 LoseEngine(thrusterToStart)
 else
 Success = True
 endif
 endif
 endif
while success

2. Lose engine

Pseudo code 3: LoseEngine(thruster=i)
if valveFailsToClose then
 missionFailure = True
else
 if availableEngines = 0
 LoseThruster(i)
 else
 if PPUfailsToSwitch
 LoseThruster(i)
 else
 switchToEngineB(i)
 endif
 endif
endif

3. Shut down all thrusters

Pseudo code 2: ShutDownAllThrusters()
for all available thrusters
 if valveFailsToClose then
 missionFailure = True
 else
 if engineFailsToShutdown then
 LoseEngine(i)
 else
 if PPUFailsToShutDown then
 LoseThruster(i)
 else
 setThrusterOnStandBy(i)
 endif
 endif
 endif
endfor

4. Operate thrusters (given time step 𝑑𝑡)

Pseudo code 5: OperateThrusters(dt)
if numberRequiredThrusters > numberOperatingThrusters
 numberThrusterToStart = numberRequiredThrusters -numberOperatingThrusters
 for i = 1 to numberThrusterToStart

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

 StartSingleThruster()
 endfor
endif

if numberRequiredThrusters = 0 then
 ShutDownAllThrusters()
dndif

for i = 1 to numberOfOperatingThrusters
 if PPUfailsToOperate then
 LoseThruster(i)
 StartSingleThruster()
 endif
 if EngineFailsToOperate then
 LoseEngine(i)
 StartSingleThruster()
 endif
endfor

5.2 Distribution Lines Damage Accumulation

As indicated in Section 2, distribution lines damage accumulation can be described as a classical
Brownian motion (also know as Weiner process or random walk) characterized by a mean value 𝜇
(i.e., drift) equal to 1 and a standard deviation 𝜎 (i.e., diffusion) equal to 0.4. Under this assumption,
temporal evolution of accumulated damage 𝐷 = 𝐷(𝑡) can be described by Eq. 4 [4]:

𝑑𝐷 = 𝜇 𝑡 + 𝜎 𝑑𝑊! (4)

where 𝑊! is a one-dimensional continuous process such that for any two times 𝑡 > 𝑠 it has
independent increments 𝑊! −𝑊! distributed normally with mean 0 and variance 𝑡 − 𝑠. Such process
can be easily coded using the following approach:

𝐷 𝑡 + 𝑑𝑡 = 𝐷 𝑡 + 𝜇 𝑑𝑡 + 𝑁 0,𝜎 𝑑𝑡 (5)

Equation 5 has been coded as a separate module in Python as shown in Code 1. Note that in the
benchmark case, 𝜇 and 𝜎 change with time: 𝜇 = 𝜇(𝑡) and 𝜎 = 𝜎(𝑡) . An example of damage
accumulation profile for five independent simulation runs are shown in Fig. 4.

Code 1: Damage accumulation

def brownian(x0, n, dt, mu, sigma):
 x = np.zeros(n, np.dtype(float))
 W = np.zeros(n, np.dtype(float))
 x[0]=x0
 for i in range(1, len(W)):
 x[i] = x[i-1] + dt
 W[i] = W[i-1] + mu*dt + np.random.normal(0, sigma) * np.sqrt(dt)
 return W[len(W)]

5.3 CCF Failures

CCF failures affect only thruster operations (i.e., start, operation and shut-down). Common cause
failures (CCF) have been modeled by taking the group conditional failure probabilities supplied in the
benchmark problem specification (see Table 2) as β-factor values, i.e. the total failure probability or
rate 𝑝!! of component i (PPU, valve, engine) is determined as:

𝑝!! = (1 + 𝛽)𝑝! (5)

where 𝑝!are given in Table 1 and the β-factors are given in Table 2.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 4: Examples of distribution lines damage accumulation in the [0,5] h interval

5.4 Valve failure probabilities
The probability of failure for the valve has to be considered as a probability per demand. Such
probability value depends on the uncertain parameter p which is characteristic of each valve. Such
value remains constant throughout the mission time but differs from valve to valve. In our model we
initialize the values of valve failure probabilities (p_valve) at the beginning of each simulation run
using the python script presented below. Figure 5 shows the temporal profile of the pressure
oscillation for the two values of 𝑝 (𝑝 = 0.4 and 𝑝 = 0.8). Given the uncertainty associated with the
parameter 𝑝, we investigated the probability distribution of p_valve that is shown in red line of Fig. 5
(right).

Code 2: p_valve determination
def pressureOscil(t,p):
 value=0
 if t<0 and t>4:
 value = 0
 else:
 value = np.sin(t*np.pi/4)*np.sin(t*np.pi/p)
 return abs(value)

def p_valve(p):
 integral = quad(pressureOscil,0,4, args=(p), limit=100000)
 value = (np.exp(integral)-5)*0.0001
return value

5.5 Tank Leaks

At each time step 𝑑𝑡 the simulator queries the possibility of having a tank leak. As shown in Pseudo
code 6, note that simulator account he possibility that more that one leaks can be present.

Pseudo code 6 (given time step 𝒅𝒕): updateTankLeaks(dt)
if newLeakOccurs then
 leakRate = sampleRateValue()
 repairTime = sampleRepairTime()
 leakSet.push(leakRate, repairTime)
endif

for i = 1 to all leaks
 repairTime[i] = repairTime[i] – dt
endfor

5.6 Mission Simulation

Mission profile for each scenario:

• Scenario 1: with stop at the support station
• Scenario 2: without stop at the support station

have been divided into phases as shown in Fig. 6: phase numbers are shown in italics.

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 5: Temporal profile of pressure oscillation during valve activation for p = 0.4 and p = 0.8 (left) and

probability distribution function of p_valve (right)

Figure 6: Mission profiles phase discretization for Scenario 1 (top) and Scenario 2 (bottom)

Mission temporal evolution has been calculated using a value of 𝑑𝑡 = 1. Pseudo code that perform a
single simulation run is provided below:

Pseudo code 7: Simulation()
for i = 1 to numberOfPhases
 for t = 1 to lengthOfPhase[i]
 OperateThrusters(dt)
 updateDistributionLinesDamage(dt)
 updateTankLeakages(dt)
 updateFuelAmount(dt)
 if missionFailure = True
 stopSimulation()
 endif
 endfor
endfor

where the pseudo code for updateFuelAmount(dt) is as follows:

Pseudo code 8: updateFuelAmount(dt)
for all operating thrusters
 fuelAmount = fuelAmount – 1 * dt
endfor
for i = 1 to all leaks
 fuelAmount = fuelAmount – leakRate[i] * dt
endfor

6 RESULTS

In order to determine the reliability of the overall system, we employed the RAVEN code to perform a
Monte-Carlo (MC) analysis. The MC simulation of the system mission was performed with 3·105
histories for each scenario. Final reliability values are:

• Scenario 1 (without stop at support station): 16.17 %
• Scenario 2 (with stop at support station): 82.09 %.

Monte&Carlo+

Density+es0ma0on+

Th

ru
st

er
s N

ee
de

d

Time

Time

Th

ru
st

er
s N

ee
de

d

2

3

3

28
00

52
00

78
00

0

38
00

0

50
00

0

69
00

0

54
00

0

69
00

0

38
00

0

18
00

0
12

00
0

28
00

0

78
00

0

18
00

0

31
00

0

2

28
00

52
00

12
00

0

23
00

0
23

00
0

40
00

0
40

00
0

21
00

0

1"""""2""""""3""""""""4"""""5"""6""""""""""""""""7"""""""""""""8""""""""""9""""""""""""""""10"""""""""""""11"

""1"""""2""""""3""""""4"""""5""""""""6""""""""""""""""7""""""""""8"""""""""""""9""""""""""""""""10"""""""""11"

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Temporal profiles of the system reliability for both scenarios are shown in Figure 7.

Figure 7: Temporal profiles of the system reliability for scenario 1 (left) and scenario 2 (right)

We also performed a series of MC experiments using the RAVEN code. In each experiment we
isolated specific failure modes in order to evaluate the impact of these failure modes on the overall
system reliability. In particular, we focused our attention on identifying the impact of thruster
reliability, distribution lines damage accumulation, CCF and initial fuel uncertainties.

6.1 Impact of Thruster System Reliability

We evaluated the impact of the thruster dynamics only into the reliability function. In essence, at each
𝑑𝑡 (see Pseudo code 7), we considered only OperateThrusters(dt). The temporal profiles of
the reliability function for both scenarios are shown in Fig. 8. Final reliability values are (CCF
considered):

• Scenario 1 (without stop at support station): 99.22 %
• Scenario 2 (with stop at support station): 99.05 %.

Figure 8: Scenario 1 (left) and Scenario 2 (right) temporal profile of reliability function if only thruster

system is considered (with CCF)

6.2 Impact of CCF failures

For both scenarios we were able to determine that CCF failures are responsible for decreasing the
overall system reliability by 2%. The temporal profiles of the reliability function for both scenarios are
shown in Fig. 9.

6.3 Impact of Damage Accumulation

We evaluated the impact of distribution lines damage accumulation only into the reliability function:
at each 𝑑𝑡 (see Pseudo code 7), we considered only updateDistributionLinesDamage(dt).

Propulsion**
system*ON*

Distribu3on*lines*
accumulated*damage*

Final*value*=*0.1617**

Propulsion**
system*ON*

Final*value*=*0.8209**

Propulsion**
system*ON*

Propulsion**
system*ON*

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

We were able to notice that damage accumulation plays a major role in the overall system reliability.
For Scenario 1, the distribution of accumulated damage at 𝑡 = 78,000 is given in Fig. 10, i.e., there is
about 49% probability that the accumulated damage reaches its threshold (80,000). In fact, such accu-
mulated damaged is almost normally distributed with mean value of 80,070 and sigma equal to 117.

Figure 9: Scenario 1 (left) and Scenario 2 (right) temporal profile of reliability function if only thruster

system is considered (without CCF)

On the other hand, for Scenario 2 (see Fig. 11), the accumulated damaged at 𝑡 = 78,000 is normally
distributed but with mean value of 62,938 and sigma equal to 109.6. Final reliability values are:

• Scenario 1 (without stop at support station): 19.6%
• Scenario 2 (with stop at support station): negligible

Figure 10: Distribution lines damage accumulation for Scenario 1

Figure 11: Distribution lines damage accumulation for Scenario 2

Without'CCF'

With'CCF'

Propulsion''
system'ON'

Without'CCF'

With'CCF'

Propulsion''
system'ON'

Regions(with(higher(damage(
accumula3on(rate(

Mission(failure(
threshold(

Sta$on'

Regions'with'higher'damage'
accumula$on'rate'Mission'failure'

threshold'

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 12: Temporal profile of system reliability due to accumulated damage for Scenario 1

6.4 Impact of Tank Leakages + initial fuel uncertainties

At the end, we evaluated the impact of tank leaks and initial fuel uncertainty into the reliability
function by considering updateTankLeakages(dt) and updateFuelAmount(dt) at each 𝑑𝑡
(see Pseudo code 7).
Regarding overall tank system, four stochastic variables are considered:

• Initial value of fuel amount
• Probability of leaks occurrence
• Leak rate value
• Leak repair time

In particular, the last two variables determine, for each leak, the amount of fuel that is lost. Table 3
shows the amount of fuel loaded and needed for both scenarios. Note that the amount of fuel needed is
less for scenario 2 since a refuelling is being performed at the support station. Note also that the
amount of fuel surplus (loaded-needed) is obviously greater for scenario 2. Given that mission failure
occurs when fuel is depleted before 𝑡 = 78,000, we can see that this occurs when the amount of fuel
lost due to tank leaks exceed the surplus.

Table 3: Fuel loaded, needed and surplus for both scenarios

Scenario Fuel loaded Fuel needed Surplus Nominal Added
1: without stop 110,000 [5,500 16,500] 101,000 [14,500 25,500]
2: with stop 110,000 [5,500 16,500] 105,0001 [10,500 21,500]

Figure 13: Tank leak cumulative distribution function (CDF) (left) and probability distribution function

of fuel lost given a leak has occurred (right)

1 For Scenario 2 (with stop at support station), the overall amount of fuel needed for the mission is measures
from 𝑡 = 18,000 h since: 1) ship is completely refuelled during the stop and 2) the likelihood of mission failure
due to tank leakages before 𝑡 = 18,000 h is negligible.

Distribu(on+of+fuel+
surplus+(Scenario+2)+

Distribu(on+of+fuel+
surplus+(Scenario+1)+

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Figure 13 (left), shows that the likelihood of a tank leak is very high; in addition, it also shows the
distribution of fuel lost due to tank leaks given that a leak has occurred (Fig. 12, right). This
distribution is compared to the distribution of fuel surplus for both scenarios. Hence, from Fig. 12
(right), we expect that system reliability due to tank leaks and initial fuel uncertainties is considerably
higher for scenario 2. In this respect, Fig. 13 shows, for scenario 1 (left) and 2 (right), the temporal
profile of the reliability function.

Figure 14: Temporal profile of reliability function for scenario 1 (left) and 2 (right) when only tank leaks

and initial fuel uncertainty are considered

6.5 Summary of reliability contributions

As a summary of the results shown in the previous sections, for each scenario we show in Figure 15
the probability of success (green) and the major contributors to failures: tank leaks (red), distribution
lines (yellow) and propulsion system (blue).

Figure 15: Probability of success (green) and the major contributors to failures: tank leaks (red),
distribution lines (yellow) and propulsion system (blue) for Scenario 1 (left) and Scenario 2 (right)

7 CONCLUSIONS

This paper presented a solution of the PSAM12 space propulsion system benchmark. A stochastic
analysis was performed in order to obtain the system reliability using the Monte-Carlo capabilities of
the RAVEN code. An ad-hoc simulator has been developed and coded in python and then interfaced
with RAVEN. We have obtained an overall system reliability of 16% for Scenario 2 and 82% for
Scenario 1. This suggests that a stop at the support station is mandatory in order to maximize mission
success. We also investigated the impact of: thruster reliability, distribution lines damage
accumulation, CCF and initial fuel uncertainties.

References

[1] A. Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, R. Kinoshita, “Raven as a tool for dynamic

probabilistic risk assessment: Software overview,” in Proceeding of M&C2013 International

Propulsion**
system*ON*

Propulsion**
system*ON*

Probabilistic Safety Assessment and Management PSAM 12, June 2014, Honolulu, Hawaii

Topical Meeting on Mathematics and Computation, CD-ROM, American Nuclear Society,
LaGrange Park, IL (2013).

[2] C. Rabiti, D. Mandelli, A. Alfonsi, J. Cogliati, R. Kinoshita, “Mathematical framework for the
analysis of dynamic stochastic systems with the RAVEN code,” in Proceeding of M&C2013
International Topical Meeting on Mathematics and Computation, CD-ROM, American Nuclear
Society, LaGrange Park, IL (2013).

[3] M. Marseguerra, E. Zio, J. Devooght, P.E. Labeau, “A concept paper on dynamic reliability via
Monte Carlo simulation,” Mathematics and Computers in Simulation, 47, pp. 371-382 (1998).

[4] C. Gardiner, Stochastic Methods for Physics, Chemistry, and the Natural Sciences (4th edition),
Springer Series in Synergetics, Springer-Verlag, Berlin, Third edition, (2004).

APPENDIX A: BASE BENCHMARK PROBLEM RESULTS

In this appendix we present the result obtained for the base benchmark problem. Reliability value
obtained was 0.986 as shown in Fig. 16. Figure 16 shows the reliability drop caused by failure on
demand

Figure 16: Temporal profile of reliability function for the base version of the benchmark problem

APPENDIX B: COMPARISON TABLE

• Methodology Employed: Monte-Carlo
• Stochastic analysis tool: RAVEN
• Software parameters: 300,000 runs
• System simulator initially developed in Python and later in C++ for faster computational time
• Computational resources: Intel core i7-3770 Quad Core (3.4 GHz), 16 GB SDRAM DDR3
• Computational time: ~ 5 hours

Component Hypothesis/Approximations Modelling

PPU No approximation Control logic implemented through scripts
Ion engine No approximation Control logic implemented through scripts
Valve No approximation p_valve values numerically determined for each

simulation run
Distribution line Stochastic process embedded into

the simulator
Damage modelled as a Weiner process

Phase mission Mission divided into 11 phases Time step for the simulation set to 1 hour
Engine CCF Beta factor Failure probability 𝑝!! is determined as 𝑝!! = (1 + 𝛽)𝑝!

Propulsion**
system*ON*

Propulsion*system*
(w/o*CCF)*

Final*value*=*0.986**

Propulsion*
system*(w/*CCF)*

Propulsion*system*
(w/*CCF)*and*valve*
leakages**

Drop*caused*to*
failures*on*demand**

