
The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance

INL/EXT-13-29510

Deployment and
Overview of RAVEN
Capabilities for a
Probabilistic Risk
Assessment Demo for a
PWR Station Blackout

Cristian Rabiti
Andrea Alfonsi
Diego Mandelli
Joshua Cogliati
Richard Martineau
Curtis Smith

June 2013

INL/EXT-13-29510

Deployment and Overview of RAVEN Capabilities for a
Probabilistic Risk Assessment Demo for a PWR

Station Blackout

Cristian Rabiti
Andrea Alfonsi
Diego Mandelli
Joshua Cogliati

Richard Martineau
Curtis Smith

June 2013

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

DISCLAIMER
This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

ii

CONTENTS

1. Introduction .. 3
1.1 RAVEN: a tool to increase the risk management capabilities for nuclear power

plants .. 3
1.2 RAVEN: a Tool to Ensure the Deployment of the RISMC Concept....................................... 4
1.3 RAVEN: as an Overall Control System... 4
1.4 Overview of the Document .. 4

2. Software Infrastructure Overview .. 5
2.1 Mathematical Formulation of the Problem .. 5

2.1.1 System and Control Logic... 5
2.1.2 Modeling of Probabilistic Behaviors .. 6
2.1.3 The Risk Weighted Formulation... 7

2.2 Software Infrastructure for RELAP-7 Interaction.. 8
2.3 GUI Software Infrastructure .. 9
2.4 Artificial Intelligence Aided Discovery Framework.. 10
2.5 Dynamic Event Tree approach... 12

3. Reference Plant Analysis.. 13
3.1 Description of the graphical input process... 15
3.2 Control logic implementation .. 19
3.3 21
3.4 Online Monitoring.. 21

3.4.1 Postprocessors... 22
3.4.2 Visualize ... 22

3.5 Result Analysis .. 23

4. Introducing Statistical Behaviors.. 25
4.1 PWR SBO Test Case.. 25
4.2 Modeling .. 27
4.3 Results.. 28

4.3.1 Explanation of the Effect on the Maximum Clad Temperature Using a
Random Distribution on the Failure Temperature .. 32

5. Conclusion.. 33
5.1 References.. 34

6. APPENDIXES.. 36
6.1 APPENDIX A: Station Black Out Inputs .. 36

6.1.1 Plant and Raven Tools Input... 36
6.1.2 Control Logic Input... 1

1. Introduction
1.1 RAVEN: a tool to increase the risk management

capabilities for nuclear power plants
Starting in 2012, Idaho National Laboratory (INL) has been engaged to provide tools and
methodologies to support a new approach to safety assessment and management of safety related
issues for Nuclear Power Plants (NPPs).
This activity is placed under the Risk Informed Safety Margin Characterization (RISMC) [2]
umbrella that is one of the technical paths of the Department Of Energy (DOE) Light Water
Reactor Sustainability (LWRS) Program. RISMC takes a broader approach to risk evaluation by
generating more comprehensive information. This information is used to gain a more accurate
estimation of risk margins and to highlight feasible improvements that seek the optimal point
between risk mitigation and economical viability of the nuclear energy option. This is, of course,
done without taking any judgmental approach with respect to risk, which is a regulatory body
task, and the economical viability, which is up to the single states and the open electricity market.
RISMC is therefore composed of methodologies and tools. The augmented information that
RISMC seeks to generate, as enabling decision tool, is not holistic with respect all possible
metrics and operational aspects of a power plant; it is rather channeled toward the improvement
of safety and the associated economical impact. While these are indeed two very broad metrics,
they still allow a focus within the development of the underlying tools that, in a resource-
constrained environment (DOE founding, computational, mathematical) maximize the benefit of
the program to the nuclear industry.
Part of the enabling information comes from an increased accuracy in the evaluation of risk
margins and their associated uncertainties. New codes are, currently, under development to
provide the needed increase in fidelity, and the one in the most advanced status of development is
RELAP-7 [3]. RELAP-7 is currently under development at INL and is foreseen to become the
next of the RELAP series (currently INL is the licenser of RELAP5-3D). RELAP-7, as its
predecessors, is a nuclear system safety analysis code that will embed new numerical schemes to
increase the accuracy of results, allow the user to analyze the full plant life time, and span
coherently a larger situation range (e.g. same equation set from shock waves to slow transients).
One of the major strengths of RELAP-7, not yet mentioned, is the MOOSE [4] underlying
platform. This approach offers, not only all the benefits of a modern modular development
approach (ease of maintenance and quality insurance), but also leverages the high fidelity set of
codes developed, or under development, in this environment. The common environment easily
allows RELAP-7 to interact with one of the other MOOSE based applications such as Bison (fuel
performance) [5], Grizzly (material aging for pressure vessel)[6], RattleSNake (neutronics)[7].
While all of it addresses the need of higher fidelity, it does not provide information on the impact
of uncertainties arising from lack of modeling capabilities (closure laws are still necessary) and
physical knowledge (uncertainty in experimental data impairs an exact knowledge of physical
parameters), and the intrinsic probabilistic nature of some events that might impact nuclear power
plant safety (pump failure, earthquakes, etc.).
Insofar as the uncertainties in our risk knowledge, arising from intrinsically probabilistic events,
have been addressed by Probabilistic Risk Analysis (PRA), the uncertainties in our models and
physical analysis have been accounted by margins imposition.
One of the innovative approaches suggested by RISMC is the simultaneous analysis of these two
contributions in a probabilistic sense. This improves the capability to assess higher fidelity
margins with respect to situations that might bear unwanted consequences.
This is one of the main challenges that has been assigned to the RAVEN project. RAVEN
combines uncertainty quantification (UQ) with probabilistic analysis of risk (PRA). To avoid

being overwhelmed by either of the two tasks, RAVEN uses the risk and economical impact
focus to narrow the span of information that needs to be generated.

1.2 RAVEN: a Tool to Ensure the Deployment of the RISMC
Concept

It is expected that, as with any new technology, RISMC will face an initial period of resistance
and a strong momentum will be needed to overcome the tipping point after which its tools and
concepts will be broadly adopted in the nuclear community.
A coherent strategy needs to be employed in order to mitigate the resistance as much as possible,
and, thus, the friendliness of new tools and clearness of information should be part of this
strategy. In this respect, RAVEN has also been assigned the task of being an information
manager: a discriminator of what is relevant or not to properly evaluate risk.
RAVEN is the interface between the user and the whole underlying set of new tools, focusing
their work toward the production and delivering of the relevant information.
This is the part of the project for which a Graphical User Interface (GUI) has been created
allowing the generation of RELAP-7 input (in the future it will be extended to more MOOSE
based applications) and analyzing the simulation results.
Visual inspection of results is a fundamental aspect of engineering analysis, and at the same time
RAVEN is developing an environment where modern data mining techniques will be also
accessible to the users. Those techniques will be used to filter the information and carefully
discover the sources of risk in terms of critical components, leading physical phenomena, or
uncertainty sources. This information is of course twofold: the identification of risk sources can,
in fact, be used to find possible mitigation strategies.

1.3 RAVEN: as an Overall Control System
As for all PRA software, the capability to control the plant evolution during the simulation is a
plus for uncertainty propagation. For these reasons, a strict interaction between RELAP-7 and
RAVEN is a key of the long-term success of the overall project. In system safety analysis codes,
a similar need is expressed by the implementation of the control logic of the plant. As a
consequence, the optimization of resources imposes the integration of this task under a common
project that is RAVEN. Consequently, the plant control logic is simulated by RAVEN; this also
offers the flexibility to easily implement proprietary control logic without changing RELAP-7
source code. This feature is also a factor for the quick deployment of RELAP-7 to the industry.
In summary, from a user prospective, RAVEN is a tool that:

Easily generates complex plant layout including modeling information and control
logic implementation (RELAP-7 GUI, and Control Logic)
Allows following the simulation via visual interaction with the code while running
Determines the calculation flow to achieve the most accurate evaluation of risk
accounting for probabilistic behavior and uncertainty propagation
Visualizes simulations results (thousands and more) and provides the data mining
capability to deeply understand the plant behavior
Provides the capability to investigate risk mitigation strategies by suggesting
directions and quickly assessing impacts

1.4 Overview of the Document
The scope of this document is to illustrate how the actual RAVEN capabilities can be applied to a
Station Blackout (SBO) analysis for a simplified PWR model.
The following sections will illustrate:

A general overview of the mathematical formulation and software infrastructure
The input generation (comprehensive of operational control logic) for the RELAP-7
code via the GUI and the online visualization capabilities
A qualitative analysis of the simulation results
The introduction of probabilistic aspect in the simulation (PRA and UQ) and
description of the set up for Monte Carlo analysis.
An analysis of the results, with particular emphasis on a comparative approach to
highlight the effects of uncertainties on the final outcome
Conclusions with overview of the ongoing development and its contribution to the
RAVEN project

2. Software Infrastructure Overview
In the following paragraphs, a quick overview of the underlining mathematical formulation and
the software infrastructure supporting the analysis described later on will be provided to help the
reader getting familiar with the terminology and the tools.

2.1 Mathematical Formulation of the Problem
2.1.1 System and Control Logic
A nuclear power plant is a complex system but its mathematical representation will be always
reducible to a first order non-linear differential system of equations. The system (Eq. 1)
represents the time evolution of the variables fully describing the plant system (phase space).() = ((),)

Eq. 1

Without going into the details, the system above entails a continuous behavior of the velocity (in
the Hamiltonian sense) of the system in the phase space. This is not obviously always true, and
therefore the derivative should be eventually interpreted in the distributional sense. From now on,
this argument will not be further analyzed and it will be assumed that differential operators are
defined in the proper space, so that notation is consistent.
The first step is to perform a partition of the phase space so that are the variables solved by
RELAP-7 (e.g. pressure, temperature) and the ones directly controlled by the set of equation
representing the plant control logic (e.g. valve opening/closing).

== (, ,)= (, ,)
Eq. 2

Since the control logic reacts on changes happening only in a limited subset of the phase space,
this could be reflected in its mathematical representation by the introduction of a subset of the
space called ‘monitored’ space . is extracted from the whole phase space by a projection
operator (,). The final system is:

= (, ,)= (,)= (, ,)
Eq. 3

Given the discontinuous nature of the control logic, when it comes to choosing the numerical
integration scheme, to avoid instability, infinite loops, and other problems, it is best to decide to
use an operator split approach. The corresponding time discretization scheme is illustrated in the
following:

= , ,= (,)= , , = +
Eq. 4

2.1.2 Modeling of Probabilistic Behaviors
As already mentioned, RAVEN will be used to perform PRA and therefore a probabilistic
formulation of the outcome is necessary. In reality RAVEN extends the PRA analysis by
including also Uncertainty Quantification. Without going into the details of the derivation, the
final equation [8, 9] solved by RAVEN is:(, ,) = , , (, ,)

+ 12 , , , (, ,),+ , , (, ,) , , (, ,) , , = | , , , , | , , , ,
Eq. 5

Where:: partition of the phase space containing all the continuous variables : partition of the phase space containing all the discontinuous variables (, ,): probability of the plant system to be found in given as initial
condition , , : probability of the plant system to be found in given as initial
condition

: is the speed of the system in the phase space along the coordinate i

, : operator that generates a diffusive behavior of the system location probability,
due to possible internal stochastic behavior of the system like cracks propagation,
plant noises etc. (, ,): is the probability of transition, by time unit and distance unit in the
phase space, from , , to

Figure 1 provides a graphical interpretation of the difference between a deterministic and a
probabilistic system behavior. In the first case the system location evolves along a trajectory line;
while in the second case, even starting from an exact point, the system spreads its presence
probability over the phase space while time passes.

Figure 1: Deterministic (left) vs. probabilistic (right) system evolution

At the moment the solution of the equation Eq. 5 is performed in RAVEN through Monte Carlo,
Dynamic Event Tree (currently under testing), and soon also by Stochastic Polynomials. To be
noticed that aside few cases (presence of Wigner like processes [8, 9]), the Monte Carlo sampling
could be reduced to sampling of initial conditions and/or equation parameters [9].

2.1.3 The Risk Weighted Formulation
Eq. 5 is in literature referenced as Chapman Kolmogorov. This equation is very difficult to solve,
especially when the number of dimensions of the phase space is very large, as in the case of
interest for the RAVEN project, where probabilistic behavior is analyzed in conjunction with
uncertainty propagation.
Luckily not all the information contained in the solution of Eq. 5 has the same value. In fact, it
should not be forgotten that the goal of this project is the risk evaluation.

Risk=Probability x Consequences
Eq. 6

Probability is provided by the solution of Eq. 5 and the consequence metrics of interest may be
suggested by stakeholders such as the regulatory body, plant management, and, at the end, by the
software user.
A very simple example of how this observation could be used to limit the space for which it is
necessary to know the solution of Eq. 5 is the following:

== 1 max 0 max
Eq. 7

In such a case the risk evaluation reduces to the probability of the system to have a set of initial
condition such as, at a certain point in time, the consequence function is equal to 1. This defines a
very precise zone of the input space delimited by what is call limit surface. Figure 2 graphically
illustrates the concept.

Figure 2: Limit surface

This concept will be discussed in more detail later on in a practical application for the PWR SBO
analysis.

2.2 Software Infrastructure for RELAP-7 Interaction
This section provides an overview of how the above-described set of equations is implemented in
the MOOSE framework. The MOOSE framework is a software environment that provides tools
for the solution and the handling of PDE (Partial Differential Equations) based problems.
MOOSE uses LibMesh [10] to translate the equations into their numerical forms and than PETSc
[11] to solve the problem. Around these two fundamental capabilities, MOOSE provides several
handling features to structure the problem and to perform post processing. One of the most
relevant capabilities of this framework is that it allows the user to quickly implement the
numerical solution of new sets of equations and coupling physics.

Input Space

Limit Surface

Consequence = 1

Consequence = 0

RELAP-7 is one of the MOOSE based applications, and it contains the set of equations to be
solved and then the numerical form is solved by MOOSE.
RAVEN plays the rule of plant control logic. From a software point of view this capability is
implemented in the following way (nomenclature is referred from Eq. 3):

1. Via the input files RAVEN recognizes:
a. Which variables the user wants to control
b. Which variables (and the associated projection operator (,)) the

control logic will use to make decisions
c. The set of probability distributions that will be used during the simulation

to sample the input space
2. RAVEN inquires to RELAP-7 to know the location of the information it needs to

retrieve and control
3. This information is used at each time step to directly interact with MOOSE

Figure 3 illustrates this communication pattern.
RAVEN does not contain software to specifically represent any control logic but opens a channel
between the simulation (MOOSE) and a Python interface where the user can implement his own
control logic laws. In the Python interface all the controlled and monitored variables are made
accessible to users, as well as few utility functions (probability distribution function and premade
control functions).
The MOOSE project not only provides an easy implementation and leveraging software
opportunity but also enforces a strict Quality Assurance (QA) protocol for all the applications
built within its environment.
All software developed on the MOOSE framework is currently under sub-version control with an
extensive regression test suite. New software developments are collected in a shared repository,
automatically tested, and code coverage (percent of the code controlled by the regression tests) is
constantly monitored.

2.3 GUI Software Infrastructure
The mechanics allowing the implementation of the GUI is a good example of how it is possible to
take advantage of the common MOOSE platform. The MOOSE environment is capable to
provide the information on what are the needed parameters for each component.
In the same way the variables that could be controlled (e.g. pump head, component failure status),
monitored (e.g. temperature, pressure) and the respective projection operators (e.g. average,
maximum) are registered inside the code itself. Peacock is a generic GUI for MOOSE based
applications that is capable of automatically retrieving such information. The structure of the
information allows Peacock to automatically construct entry tabs.
This makes input file creation easier for someone unfamiliar with the keywords and file structure.
Peacock is also extensible. RAVEN implements additional features in Peacock that are described
below.
A graphical visualization of the nuclear power plant layout is displayed as it is created. The user,
through the GUI, can visualize the results while the simulation is still running. Two types of
information are available: a three dimensional projection of the solution generated by RELAP-7
on the plant layout, and the 2D plots of each monitored or controlled quantity (respectively and
). The solution field is communicated from RELAP-7 to the GUI via a .vtk file type and the

monitored and controlled via a .csv (Comma Separated Values) file type. Both files are
continuously updated at each time step, to allow continuous monitoring.

Figure 3: Software implementation

Figure 4: Automatic process to construct the GUI interface

2.4 Artificial Intelligence Aided Discovery Framework
The last component of RAVEN is an external wrapper that is used to perform sampling of the
simulation for different value of the input parameters.
The scheme used for this sampling is shown in Figure 5. While this is the general approach the
implementation of the DET based analysis has a slightly different approach that is, for this
reason, described in a separate paragraph.
In general, the simulation sequence could be synthesized by the following steps:

1. Few points in the input space are selected and a RELAP-7/RAVEN simulation is
performed in correspondence of those entries

2. The set of results are used to train a Reduced Order Model (ROM): a mathematical
approximation of the plant system specific to the case under evaluation

3. The ROM is inquired to evaluate the risk function
4. The regions with low accuracy (not well represented by the initial set of points in the

input space) and highly important toward an accurate evaluation of the risk
function, are then chosen to be further investigated

5. More evaluation (RELAP-7/RAVEN simulations) are performed in such regions
6. The ROM is enriched by the new information acquired and either the process restart

form point 3 or it stops being achieved the needed accuracy

To provide a practical example it is helpful to refer to the consequence function described in the
paragraph on ‘the Risk Weighted Formulation.’ In that case a suitable choice for the reduced
order model could be a classifier (a ROM returning a Boolean value) that will be False if the
maximum clad temperature is exceeded during the simulation and True otherwise. This classifier
is, in the case illustrated in this report, built using Support Vector Machines (SVM).
The sequence is:

1. Initial Monte Carlo sampling of the input space: a low number of simulations is
run for a set of value of the input parameters randomly generated

2. The initial set of simulations is used to train the SVM classifier: the ROM
3. The ROM is used to predict the location of the limit surface in the input space
4. Additional sample points are chosen along the limit surface
5. The simulation on those points are used to refine the ROM
6. If the limit surface has changed position then return to step 3 otherwise stop the

process (i.e. convergence is reached)

This approach has the great advantage to adaptively focus on the regions of the input space that
are important to proper evaluate the risk function, being therefore more effective. The
development of ROMs algorithms is long and expensive; therefore a general interface to import
the scikit-learn open source library has been generated [11].
Currently the iterative process is not yet in place so in the presentation of the SBO only the Monte
Carlo results and the corresponding limit surface are shown.
This component of the RAVEN software has also the capability to spawn parallel runs of the
underling code (RELAP-7/RAVEN) so to take advantage of large computer clusters to speed up
the Monte Carlo process. For example during the simulation presented in this report ~120 cores
were used to run 120 simulations at the time.

Figure 5: Usage of a ROM to perform guided sampling

2.5 Dynamic Event Tree approach
Conventional Event Tree (ET) based methodologies are extensively used as tools to perform
reliability and safety assessment of complex and critical engineering systems. One of the
disadvantages of these methods is that timing/sequencing of events and system dynamics is not
explicitly accounted for in the analysis while it could be very important.
In order to overcome these limitations a “dynamic” approach is needed. The Dynamic Event Tree
(DET) technique brings several advantages, among which the fact that it simulates system
evolution in a way that is consistent with the progression of the accident scenario. In DET, event
sequences are run simultaneously starting from a single initiating event. The simulation branches
at user provided times and physical conditions. A couple of examples might clarify the
methodology:
Branching at a certain point in time

A valve is set to start a new branch every 20 minutes where it moves its status from available
to failed
Valve starts the simulation being available
After the first 20 minutes of simulation a parallel branch is started where the valve is failed
(branch 2), while in the root simulation (branch 1) the valve is still available
For the next 20 minutes the valve will be available in the branch 1 while failed in branch 2.
This might lead to a different evolution of branch 1 with respect branch 2
After an additional 20 minutes the branch 1 will create another branch (3) and so on

Branching at a given physical conditions
A valve has a certain probability to fail every time it gets used (failure on demand) by the
control system
Every time the control system demands the usage of the valve a new branch is generated
where the valve is failed while the root branch move forward with the valve available

Situations could be much more complex, and RAVEN can handle almost all possible
combinations like, for example, multiple outcomes (several branches started at the same time).
The user has to set a time limit at which the branches will stop or an event which occurrence will
also stop the simulation.
Each branch has associated a probability that represents the cumulative likelihood of the specific
set of events leading the system to that branch. In this way it is always possible to associate to a
specific outcome its own probability. Figure 6 provides a visual representation of a DET
evolution.
The DET methodology has been developed in RAVEN and has been included in the RAVEN
external Python manager (Artificial Intelligence Aided Discovery Framework).
Currently DET is already available in RAVEN but the application of this methodology to the
PWR SBO has just started and is part of a later deliverable in September.

Figure 6: Dynamic Event Tree Scheme

3. Reference Plant Analysis
A simplified PWR model has been setup based on the parameters specified in the OECD main
steam line break (MSLB) benchmark problem [13]. The reference design for the benchmark is
derived from the reactor geometry and operational data of the TMI-1 Nuclear Power Plant (NPP),
which is a 2772 MW two loop pressurized water reactor.

Figure 7: Scheme of the PWR model

Figure 7 shows the scheme of the PWR model. The reactor vessel model consists of the Down-
comers, the Lower Plenum, the Reactor Core Model and the Upper Plenum. Three Core-Channels
(components with a flow channel and an heating structure) were used to describe the reactor core.
Each Core-Channel is representative of a region of the core (from one to thousands of real
cooling channels and fuel rods). In this analysis, the core model consists of three parallel Core-
Channels (hot, medium and cold) and one bypass flow channel. They represent the inner and
hottest zone, the mid and the outer and colder zone of the core. The Lower Plenum and Upper
Plenum are modeled with RELAP-7 Branch models. There are two primary loops in this model –
Loop A and Loop B. Each loop consists of the Hot Leg, a Heat Exchanger and its secondary side

pipes, the Cold Leg and a primary Pump. A Pressurizer is attached to the Loop-A piping system
to control the system pressure. Since a complex Pressurizer model has not been implemented yet
in the current version of RELAP-7 code, a Time Dependent Volume (pressure boundary
conditions) has been used instead.

To circumvent the lack of two phases flow of RELAP-7 code (now present, but not at the time of
the simulation set up), single-phase counter-current heat exchanger models, with high mass flow
rate, are implemented to mimic the function of steam generators (i.e. to transfer heat from the
primary to the secondary).

Figure 8 shows the core layout of the PWR model. The core height is 3.6576 m. The reactor
consists of 177 fuel assemblies subdivided in 3 zones. The 45 assemblies in zone 1 are
represented by the hot core channel, the 60 assemblies in zone 2 and 72 assemblies in zone 3 are
respectively represented by the average core channel and the cold core channel. The fuel
assembly geometry data is taken from reference [13]. The reactor is assumed to be at end of cycle
(EOC), 650 EFPD (24.58 GWd/MHMt average core exposure), with a boron concentration of 5
ppm, and Xe and Sm at the equilibrium. The 3-D core neutronics calculation results for the hot
full power condition are presented in reference [13].

Figure 8: Core Zone Correspondence

Figure 9: Assembly Relative Power

Figure 9 shows the relative assembly radial power distribution for a quarter of the core. Using the
values presented in Figure 9, the power distribution fraction and power density for each Core-
Channel is calculated and shown in the following table. The power density is used as input to
RELAP-7 to calculate the heat source.

Table 1: Power distribution factor for representative channels and average pellet power

Core Channel Power Distribution Factor Average fuel pellet power density (W/m3)

Hot 0.3337 3.90 x 108

Average 0.3699 3.24 x 108

Cold 0.2964 2.17 x 108

3.1 Description of the graphical input process
Input file creation begins by running Peacock from the directory containing the RELAP-7 code.
An existing input file to begin with may also be specified. Peacock, after inquiring RAVEN for
the proper input structure, initializes the GUI and eventually visualizes an already existing input
file.

Figure 10: Peacock GUI for RAVEN

Figure 10 shows the Peacock GUI specific to RAVEN. It includes the visual representation of the
plant as well as additional tabs: “RavenExecute” and “Control Edit”. On the left, the different
sections of the input file are shown. The section containing the structure of the plant is expanded
to a list of individual components. The checkboxes are used to quickly activate or deactivate
particular parts of the input file.
On the right side, the plant layout is drawn. The user may navigate (pan, rotate, zoom) using
either the mouse, or alternatively using buttons below the model display. Figure 11 shows a
zoomed in view of the same model shown in Figure 10 with the navigation buttons highlighted.
Also shown are the text labels for each component. If the mouse pointer is positioned over a
component and left immobile (also known as “hovering”) the name and type are temporarily
displayed in a box. In Figure 11, this is being shown for “DownComer-B” which is a pipe.

Figure 11: Model of Plant with Navigation Buttons Highlighted

There are also some helpful tools available at the top of the drawn model (Figure 12).

Figure 12: Upper Toolbar

(Flashes red and yellow) The presence of this icon indicates that there are problems
detected in the model. By clicking, it will display a selectable list of all of the problems
listed by component.

Toggles the display of labeled axes at the origin of the model. The default is off.

Toggles the display of text indicating each the name of each component. The
default is on.

Toggles the display of all pipe objects between their actual physical size (based on
cross-sectional area) and a uniform value. In many cases it is easier to comprehend the
model using the constant. The default is uniform.

Toggles the display of all components between solid (shown in Figure 11) and wire
frame. Wire frame is useful to observe parts of the model not visible in solid mode. The
default is solid.

Toggles display of the current center of rotation for the model. In some cases
(particularly when viewing large models) it may be useful to adjust the depth of the
rotation center.

Causes the model to be refreshed.

Causes, if open, the “parameter edit” window (see below) to be brought to the front.
This makes it easier to find it when covered by other windows.

By typing into this box
searches the list of component names. All names starting with the typed text are shown
in a list. Selecting one causes it to flash.

The parameters for an individual item may be accessed by either double-clicking the list entry on
the left or on the drawn component in the plant layout. If not already open, the “parameter edit”
window is created and shown with a sub-window where the component parameters are editable.
Several sub-windows can be simultaneously shown (see Figure 13).

Figure 13: Parameter Window with Three Sub-Windows

Buttons are also provided to arrange the windows in various ways, as well as scroll through them
one at a time. Any changes made to a component will take effect when its “Apply” button is
pressed. Peacock will not allow changes to be applied until all mandatory values for a component
have been entered.
Mandatory entries are highlighted in orange as shown in Figure 13.

A context menu is available for any component by right-clicking on it. Figure 14 shows the
context menu for “UpperPlenum”, which is of type “ErgBranch”. This menu will list all ports
that may be connected to another component. Each of these provides a submenu allowing
connections to be made and removed. In the example, UpperPlenum has four inputs: CH1, CH2,
CH3, and bypass_pipe. When adding connections, only those actually eligible are listed for
selection.

Figure 14: Component Context Menu Example

From the component context menu is also possible to change the visualization mode (wireframe
or solid), bring up the corresponding parameters for editing, and make identical copies.

3.2 Control logic implementation
After the generation of the input file of the PWR model through the GUI, the following step is the
implementation of the control logic that drives the sequence of events characterizing a SBO
scenario:

At 100 s, the transient begins (restart from steady state conditions previously
computed)
At 101 s, grid power is lost and immediate shutdown of the reactor occurs (scram),
followed by:

o Pump coast down
o Decay heat power
o Diesel Generators fail to operate (AC power lost) and, thus, auxiliary cooling

system is inoperable
At 1675 s, recovery of the AC power; auxiliary cooling system starts operating
At 2500 s, transient ends (No Clad failure)

Figure 15 and Figure 17 show the procedure to create controlled and monitored variables. In
each RELAP-7 component, the controllable and ‘monitorable’ variables are listed in the
controlled and monitored drop down menu in each component. Figure 15 shows how to create the
controlled variable that is linked to the Head of the Pump-A. Selecting from the corresponding
controlled drop down menu, the user can create a variable chosen among the listed ones. The
procedure to create a monitored variable is similar to the previous one, but, since a monitored
variable is the result of an operation on a RELAP-7 field variable, the user needs to also specify
an operator that will be applied on it during the calculation. In Figure 17, for example, the
“Nodal Maximum Value” operator, applied to the clad heat structure, produces, as result, the
maximum temperature in the clad.
The auxiliary variables are created in the RavenAuxiliary input block. Figure 17 shows the
creation of the Raven Auxiliary variable scram_start_time that is used as a signal at the beginning
of the accident sequence.
In order to perform the SBO analysis, some ‘tools’ (so named in the code), aimed to emulate
different component behaviors, are needed. As already mentioned, after the loss of power grid
and consequent immediate scram of the reactor, the primary and secondary pumps start the coast
down and the reactor power is driven by the decay heat.
All these dynamic evolutions are described by the RavenTools block, in which the user can
choose among different pre-defined “functions”. Figure 18 shows how the Pump Coast-Down
tool has been created. All tools are registered in the MOOSE software factory (indicates a
software structure used to standardize function interfaces); therefore, any time a new one is
added, it appears automatically as a possible entry in the GUI associated block.
As can be inferred by the control logic input reported in Appendix A, all the Raven variables,
tools, etc. are available and usable in the python environment with a prefix that indicate their type
(e.g. controlled, monitored) and a name that is the one assigned by the user at the input stage.

Figure 15: Generation of a controlled variable

Figure 16: Generation of a monitored variable

Figure 17: Generation of an auxiliary variable

3.3
Figure 18: Tools creation

3.4 Online Monitoring
The user can follow the evolution of the simulation in two tabs: Postprocessors and Visualize that
are shortly illustrated below.

3.4.1 Postprocessors
In this GUI tab, which main functions are summarized in Figure 19, the user can follow the
evolution of the auxiliary, monitored and controllable variables. Since this operation involves the
reading of an optional file from the RELAP-7 code, it requires setting a proper logical flag
(print_csv) for each variable that the user wants to visualize. The displayable variables are listed
on the left side of the tab and when one of these is activated the corresponding plot is shown in
the display window. Multiple plots are sequentially arranged.

3.4.2 Visualize
The tab named “Visualize” (see Figure 20) allows the visualization of the solution fields
computed by RELAP-7. On the right side there is a list of the components that could be possibly
activated and the different solution fields present in the actual simulation (e.g. solid temperature,
fluid temperature, pressure, etc.).
On the bottom of the tab there are switches that can be used by the user for controlling the
execution of the movie representing the time evolution of the selected fields and components.
Like in the input tab, there are commands to handle and customize the plant layout 3D
visualization (e.g. zoom, shift, rotation, etc.).

Figure 19: Postprocessor tab

Variable List
Variables Plots

Figure 20: Visualize tab

3.5 Result Analysis
In this section, the results for the reference case will be discussed.
As already mentioned, the accident sequence begins when the Reactor is in normal operation state
(reference point set at 100 seconds). At 101 seconds the external power grid is lost and the reactor
scrams. All the auxiliary cooling systems and the Diesel generators fail to operate bringing the
nuclear power plant in SBO state.

Component List

Solution Field
Selection/Control

3D Layout Visualization
Controls

Take a Picture

Movie Controls

For this reference analysis, the average recovery times for trains of Diesel Generators, Primary
and Secondary Power Grid have been used. As a results the Auxiliary Cooling System is back on
line at time = 1675 seconds.
Figure 21 shows the Pump-A/B Head evolution. Right after the loss of power, the Pumps in the
two primary loops begin an exponential coast down until the flow regime reaches the natural
circulation mode. At 1675 seconds, the cooling system is recovered and the Head of the pumps
reaches (rump-up ~ 1 s) the 5% of the operational value (8.9 m).
Figure 22 shows the temperature of the clad in the hot channel (Channel 1). Right after the
reactor scram, the temperature of the clad starts rising until the auxiliary cooling system is
restored. As can be noticed, the backup of the cooling system causes oscillations on the clad
temperature. These oscillations are determined by the sudden insertion of the auxiliary system
that imposes a mass flow rate ~ 5% of the operational one. The initial local maximum (~150 sec)
is due to the sudden loss of heat sink while the fuel still behaves as a heat reserve; after a while
the remaining cooling capacity (pumps’ inertia) succeeds in diminishing the temperature
(between 150 and 500 sec). The situation inverses again when the primary and secondary pumps
completely stop.
It must be noted that the transient has been shortened in order to contain the computational time
and because the main goal of this analysis is to show the abilities of RAVEN performing PRA
analysis rather than a full realistic SBO analysis.

Figure 21: Pump A (equal pump B) head evolution

Figure 22: Average clad temperature in channel 1

4. Introducing Statistical Behaviors
This section presents the extension of the previously presented test case to show
the capabilities of RAVEN to perform PRA.

4.1 PWR SBO Test Case
The system considered is a simplified model of a PWR system described in the
previous section.
In order to simulate a SBO initiating event we added several components in the
control logic (see Figure 23):

Set of three diesel generators (DGs) and associated emergency buses
Primary power grid line 138 KV (connected to the NSST switchyard)
Auxiliary power grid line 69 KV (connected to the RSST switchyard)
Electrical buses: 4160 V (step down voltage from the power grid and voltage
of the electric converter connected to the DGs) and 480 V for actual reactor
components (e.g., reactor cooling system)

Figure 23: Scheme of the electrical system of the PWR model

The accident scenario is the following:
1. An external event causes a loss of off-site power (LOOP) due to damage of the

138 KV line and RSST switchyard; the reactor successfully scrams and, thus,
power generated in the core follows the characteristic exponentially decay
curve

2. The set of DGs fail to start and, hence, conditions of SBO are reached (4160 V
and 480 V buses are not energized); all cooling systems are subsequently off-
line

3. Without the ability to cool the reactor core, its temperature starts to rise
4. In order to recover AC electric power on the 4160 V and 480 V buses, two

recovery teams are assembled with the following strategy:
a. Recovery Team 1 focuses on the recovery of the DGs: due to internal

damage at the DG building, two DGs (i.e., DG1 and DG3) need to be
repaired (see Figure 24(a))

b. Recovery Team 2 focuses on the recovery of the RSST switchyard;
69KV line is energized but the RSST switchyard needs to be recovered
(see Figure 24(a))

5. Meanwhile the owning company is working on the restoration of the primary
138 KV line (see Figure 24(a))

6. When the 4160 KV buses are energized (through the recovery of the DGs,
RSST or 138KV line), the auxiliary cooling system is able to cool the reactor
core and, thus, core temperature decreases.

 (a) (b) (c)

Figure 24: AC power recovery paths through: DGs (a), RSST (b) and 138KV line (c). Red lines indicate electrical path
to power Auxiliary cooling system

4.2 Modeling
Given the uncertainties associated to the recovery of both DGs, RSST and 138KV
line, we modeled these three recovery events as stochastic events with probabilistic
distributions associated to them. Given the time scale associated to the dynamics of
the RELAP7 PWR model the distribution were chosen as follows (see Figure 25):

DGs: a dead time of 100s is required by Team 1 to gather at the DGs building
and DG1 repair time TDG1 has a normal distribution having mu = 800 and
sigma = 200. This distribution is also truncated such that 0 < TDG1 < 2500.
The recovery time of DG3, TDG3 , is proportional to TDG1. Such relation has
modeled using a multiplication factor T12, i.e., TDG3 = TDG1·T12. T12 is uniformly
distributed between [0.5 1]
RSST: a dead time of 400s is needed to assess the damage at the RSST
switchyard and to plan its recovery. Recovery time for RSST, TRSST , is
normally distributed with mu = 1400 and sigma= 400
138KV line: the recovery of the main AC line T138 is normally distributed with
mu = 2000 and sigma = 500

In addition, the clad failure temperature TC,fail is not fixed but it is probabilistic
distributed with a triangular distribution characterized by the following parameters:

mode: xPeak = 2200 F(1477.59 K), 10CFR regulatory limit
lower bound: xMin = 1800 F (1255.37 K), PRA success criterion
upper bound: xMax = 2600(1699.82 K), Urbanic-Heidrick transition temperature

Figure 25: Recovery timings for DGs, RSSt and 138 KV line (color intensity is proportional to probability)

Thus, the Monte-Carlo analysis, for each run consist of the following steps:
Sample the values of: TDG1 , TDG3 , TRSST , T138 and TC,fail from their own
distribution
Perform a simulation run; under SBO conditions the clad temperature rises

o If AC power is recovered (through DGs, RSST or 138 KV) then cooling
is restored and clad temperature starts to decrease

o If temperature of the clad reaches TC,fail , then core damage occurs

4.3 Results
We performed a total of 4000 simulation runs. With such high number of runs, it
was possible to obtain a good statistic on the five stochastic variables and, thus, also
on the output variables such as the maximum clad temperature reached inside the
core. In this respect, Figure 26 and Figure 27 show the obtained distributions for the
five stochastic variables: TC,fail , TDG1 , TDG3 , TRSST , T138 . Figure 28 shows the temporal
profiles of the clad temperature inside CH1 for all simulation runs.

Figure 26: Distribution profiles obtained from the 4000 sample for TC,fail

Figure 27: Distribution profiles obtained from the 4000 sample for TDG1 (top left), TDG3 (top right), TRSST (bottom left)

and T138 (bottom right)

Figure 28: Temporal profiles of the clad temperature in CH1 for all the 4000 simulations

In order to analyze the data set obtained, we compared the distribution of the clad
failure temperature with the maximum temperature reached inside the core (see
Figure 29).

Figure 29: Distribution of clad failure temperature (red) and maximum clad temperature reached in the simulation

(blue)

The region when the two distributions overlap indicates the range of temperature where failure
might occur.
When this effect is accounted for, that is the simulation is stopped when the temperature of the
clad failure is reached (accounting for his random value), the histogram of the maximum
temperature changes as shown Figure 30. The distortion seen with respect the Figure 29 is in
agreement with the mathematical explanation given in the next section of the analysis of results.

We then performed a series of exercises to identify how the 5 stochastic variables contribute to
system failure.
A first approach was to identify how uncertainties associated to clad failure temperature and
recovery time of auxiliary cooling system would affect simulation outcome (i.e., failure or
success). In particular, we determined the limit surface, i.e., the boundaries in this 2-D space
between system failure and success.
Figure 8 shows such boundaries along which the scatter plot of all 4000 simulation runs pictured
in green or red depending on simulation outcome (success or a failure respectively). The limit
surface has been determined using a Support Vector Machine classifier as shown in [14].
As expected, system failure occurs for low values of clad fail temperature and high values of
auxiliary cooling system recovery time (i.e., when AC power is recovered through DGs, RSST or
138KV line).
We also extended the evaluation of the limit surface on a 3-D case by considering only the
recovery time of DGs, RSST and 138 KV line and keeping a fixed value for TC,fail =2200 F or
1477 K(i.e., we are looking at a projection of the actual 4-D limit surface in a 3-D space). Such
limit surface is shown in Figure 32. For such specific value of TC,fail, the minim value for recovery
time of the auxiliary cooling system is about 1800s (also confirmed in Figure 31). Thus in order
to obtain system success, a minimum value of 1800s is needed for at least one of the three
recoveries events. This explains the geometrical shape of the limit surface shown in Fig. Figure
32.

Figure 30: Max clad temperature histogram when failure is accounted for

Figure 31: 2D limit surface

Figure 32: 3D limit surface

4.3.1 Explanation of the Effect on the Maximum Clad Temperature Using
a Random Distribution on the Failure Temperature

As already explained, the Figure 30 shows the maximum clad temperature achieved during the
simulation if the simulation gets stopped in case of clad failure (i.e. the clad temperature exceeds
the failure value).
To better understand the results, it is possible to analyze a simplified case:

The maximum clad temperature without failing any simulation before reaching the
end mission time (the user given time value for which the simulation stops) has a
known Gaussian shape (this is an assumption not an outcome from the simulation): (= 1400, = 100)
The clad failure temperature has a Gaussian shape as well (in the simulation a
triangular shape has been used instead): (= 1500, = 50)

The probability distribution of the maximum temperature achieved by the clad, when considering
both effects, has then two contribution:

, , 1 (),
+ , 1 ()

Eq. 8

Where the first term accounts for the probability to have as a maximum temperature ,
decreased by the probability that the failure temperature was below such a value.

The second term instead accounts for the probability that the maximum temperature would have
been above , while the failure temperature exactly equal to , .
This effect is graphically illustrated in Figure 33. This analysis explains the distortion in the
distribution seen comparing Figure 29 and Figure 30 in the simulation results analysis

Figure 33: Combined effect of the uncertainty in the temperature failure on the maximum clad temperature
recorded by the simulation

5. Conclusion
The milestone of performing a PRA demo on a PWR reactor has been fully achieved and has
been described in this report. In addition to the technical achievements, a framework that makes
this results replicable and stable has been generated. The framework is capable to run hundreds of
simulations in parallel and handle the data post processing. Data are currently stored in HDF5
compressed format, which is a general portable format supported in almost all computing
architectures [15]. The limit surface approach, while still under development (adaptive loop not
yet in place), has shown strong potential to reduce the computational load of the Monte Carlo
approach.
RAVEN is moving forward to provide all the tools needed by the RISMC conceptual framework
to bring the promised innovations to the risk management practice in the nuclear industry.
There is additional work that still needs to be done:

The artificial intelligence aided discovery framework still needs to be integrated
within the RAVEN/Peacock GUI
The iterative process to take full advantage of ROM predictive capabilities has yet to
be permanently added to RAVEN
A performance analysis should be done on the several ROM models provided by
scikit-learn on more complex cases and possibly derive new ones specifics to the
type of problems of interest to RISMC

Temperature

Tools to compute the sensitivity coefficients on the risk function should be derived
and implemented in order to generate the needed information to initiate
optimization (i.e. reducing risk within economical constrain)
The implementation of data mining (unsupervised learning) to identify and rank risk
sources has not yet started

Nonetheless RAVEN, after a year and half of development, is showing a clear path forward, the
fundament of the software infrastructure has been built and has begun to show its value to the
LWRS program.
In conclusion, it is likely that the project will deliver its promises and will become key to the
RISMC toolkit.

5.1 References
1. “Light Water Reactor Sustainability Program Integrated Program Plan, Revision 1,”

INL-EXT-11-23452, April 2013
2. R. W. Youngblood, V. A. Mousseau, D. L. Kelly, and T.N. Dinh, “Risk-Informed

Safety Margin Characterization (RISMC): Integrated Treatment of Aleatory
and Epistemic Uncertainty in Safety Analysis,” The 8th International Topical
Meeting on Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-8)
Shanghai, China, October 10-14, 2010

3. “RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase
PWR Simulation with RELAP-7,” INL/EXT-12-25924

4. D. Gaston, C. Newman, G. Hansen, D. Lebrun- Grandié, “MOOSE: A parallel
computational framework for coupled systems of nonlinear equations”,
Nuclear Engineering and Design, Vol. 239, Issue 10, pp. 1768- 1778 (2009).

5. R. L. Williamson, J.D. Hales, S.R. Novascone, M.R. Tonks, D.R. Gaston, C.J. Permann,
D. Andrs, R.C. Martineau, “Multidimensional Multiphysics Simulation of Nuclear Fuel
Behavior,” Journal of Nuclear Materials, Vol. 423, pp. 149-163, 2012

6. B. Spencer, J. Busby, R. Martineau, B. Wirth “A Proof of Concept: Grizzly, the LWRS
Program Materials Aging and Degradation Pathway Main Simulation Tool,” INL/EXT-
12-27559

7. F. N. Gleicher II, Y. Wang, D. Gaston, R. C. Martineau, “The Method of Manufactured
Solutions for RattleSnake, A SN Radiation Transport Solver inside the MOOSE
Framework,” proc. Am. Nuc. Soc., Chicago, IL 2012

8. C. Rabiti, A. Alfonsi, J. Cogliati, D. Mandelli, R. Kinoshita “Reactor Analysis and
Virtual Control Environment (RAVEN) FY12 Report,” INL/EXT-12-27351

9. C. Rabiti, A. Alfonsi, D. Mandelli, J. Cogliati, R. Kinoshita “MATHEMATICAL
FRAMEWORK FOR THE ANALYSIS OF DYNAMC STOCHASTIC SYSTEMS
WITH THE RAVEN CODE,” International Conference on Mathematics and
Computational Methods Applied to Nuclear Science & Engineering May 4, 2013

10. B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: A C++ Library
for Parallel Adaptive Mesh Refinement/Coarsening Simulations. Engineering with
Computers, 22(3-4):237-254, 2006.

11. S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.

McInnes, B. F. Smith, H. Zhang “PETSc Web page,” http://www.mcs.anl.gov/petsc
2013.

12. F. Pedregosa, A. Gramfort, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R.
Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau “Scikit-learn: Machine
Learning in Python,” Journal of Machine Learning Research 12 (2011) 2825-2830

13. “Pressurized Water Reactor Main Steam Line Break (MSLB) Benchmark”, Volume I:
Final Specifications, NEA/NSC/DOC(99)8.

14. D. Mandelli and C. Smith, \Adaptive sampling using support vector machines," in
Proceeding of American Nuclear Society (ANS), San Diego (CA), vol. 107, pp.
736{738, 2012

15. The HDF Group. Hierarchical data format version 5, 2000-2010.
http://www.hdfgroup.org/HDF5.

6. APPENDIXES
6.1 APPENDIX A: Station Black Out Inputs

6.1.1 Plant and Raven Tools Input

[GlobalParams]
model_type = 3
global_init_P = 15.17e6
global_init_V = 0.
global_init_T = 564.15
scaling_factor_var = '1.e-1 1.e-5 1.e-8'

[]
[EoS]

[./eos]
e_0 = 3290122.80 # J/kg
beta = .46e-3 # K^{-1}
a2 = 1.e7 # m^2/s^2
rho_0 = 738.350 # kg/m^3
T_0 = 564.15 # K
type = NonIsothermalEquationOfState
cv = 5.832e3 # J/kg-K
p_0 = 15.17e6 # Pa

[../]
[]
[Materials]

[./fuel-mat]
k = 3.65
Cp = 288.734
type = SolidMaterialProperties
rho = 1.032e4

[../]
[./gap-mat]
k = 1.084498
Cp = 1.0
type = SolidMaterialProperties
rho = 1.

[../]
[./clad-mat]
k = 16.48672
Cp = 321.384
type = SolidMaterialProperties
rho = 6.55e3

[../]
[./wall-mat]
k = 1.0
Cp = 4.0
type = SolidMaterialProperties
rho = 80.0

[../]
[]
[Components]

[./reactor]
initial_power = 2.77199979e9
type = Reactor

[../]
[./CH1]

elem_number_of_hs = '3 1 1'
Ts_init = 564.15
orientation = '0 0 1'
rho_hs = '1.0412e2 1.0 6.6e1'
aw = 276.5737513
n_elems = 8
k_hs = '3.65 1.084498 16.48672'
material_hs = 'fuel-mat gap-mat clad-mat'
Dh = 0.01332254
fuel_type = cylinder
name_of_hs = 'FUEL GAP CLAD'

Hw = 5.33e4
n_heatstruct = 3
A = 1.161864
power_fraction = '3.33672612e-1 0 0'
f = 0.01
type = CoreChannel
Cp_hs = '288.734 1.0 321.384'
eos = eos
length = 3.6576
position = '0 -1.2 0'
width_of_hs = '0.0046955 0.0000955 0.000673'

[../]
[./CH2]

elem_number_of_hs = '3 1 1'
Ts_init = 564.15
orientation = '0 0 1'
rho_hs = '1.0412e2 1. 6.6e1'
aw = 276.5737513
n_elems = 8
k_hs = '3.65 1.084498 16.48672'
material_hs = 'fuel-mat gap-mat clad-mat'
Dh = 0.01332254
fuel_type = cylinder
name_of_hs = 'FUEL GAP CLAD'
Hw = 5.33e4
n_heatstruct = 3
A = 1.549152542
power_fraction = '3.69921461e-1 0 0'
f = 0.01
type = CoreChannel
Cp_hs = '288.734 1.0 321.384'
eos = eos
length = 3.6576
position = '0 0 0'
width_of_hs = '0.0046955 0.0000955 0.000673'

[../]
[./CH3]

elem_number_of_hs = '3 1 1'
Ts_init = 564.15
orientation = '0 0 1'
rho_hs = '1.0412e2 1.0 6.6e1'
aw = 276.5737513
n_elems = 8
k_hs = '3.65 1.084498 16.48672'
material_hs = 'fuel-mat gap-mat clad-mat'
Dh = 0.01332254
fuel_type = cylinder
name_of_hs = 'FUEL GAP CLAD'
Hw = 5.33e4
n_heatstruct = 3
A = 1.858983051
power_fraction = '2.96405926e-1 0 0'
f = 0.01
type = CoreChannel
Cp_hs = '288.734 1.0 6.6e3'
eos = eos
length = 3.6576
position = '0 1.2 0'
width_of_hs = '0.0046955 0.0000955 0.000673'

[../]
[./bypass_pipe]

A = 1.589571014

orientation = '0 0 1'
Dh = 1.42264
f = 0.001
Hw = 0.0
eos = eos
length = 3.6576
n_elems = 5
position = '0 1.5 0'
type = Pipe

[../]
[./LowerPlenum]
inputs = 'DownComer-A(out) DownComer-B(out)'
Area = 3.618573408
outputs = 'CH1(in) CH2(in) CH3(in) bypass_pipe(in)'
K = '0.2 0.2 0.2 0.2 0.4 40.0'
eos = eos
Initial_pressure = 151.7e5
type = ErgBranch

[../]
[./UpperPlenum]
inputs = 'CH1(out) CH2(out) CH3(out) bypass_pipe(out)'
Area = 7.562307456
outputs = 'pipe1-HL-A(in) pipe1-HL-B(in)'
K = '0.5 0.5 0.5 80.0 0.5 0.5'
eos = eos
Initial_pressure = 151.7e5
type = ErgBranch

[../]
[./DownComer-A]

A = 3.6185734
orientation = '0 0 -1'
Dh = 1.74724302
f = 0.001
Hw = 0.
eos = eos
length = 4
n_elems = 3
position = '0 2.0 4.0'
type = Pipe

[../]
[./pipe1-HL-A]

A = 7.562307456
orientation = '0 0 1'
Dh = 3.103003207
f = 0.001
Hw = 0.0
eos = eos
length = 4.
n_elems = 3
position = '0 0.5 4.0'
type = Pipe

[../]
[./pipe2-HL-A]

A = 2.624474
orientation = '0 1 0'
Dh = 1.828
f = 0.001
Hw = 0.0
eos = eos
length = 3.5
n_elems = 3
position = '0 0.5 8.0'
type = Pipe

[../]
[./pipe1-CL-A]

A = 2.624474
orientation = '0 -1 0'
Dh = 1.828
f = 0.001
Hw = 0.0

eos = eos
length = 1.
n_elems = 3
position = '0 3.0 4.0'
type = Pipe

[../]
[./pipe2-CL-A]

A = 2.624474
orientation = '0 -1 0'
Dh = 1.828
f = 0.001
Hw = 0.0
eos = eos
length = 0.8
n_elems = 3
position = '0 4 4.0'
type = Pipe

[../]
[./pipe1-SC-A]

A = 1.3122
orientation = '0 -1 0'
Dh = 0.914
f = 0.001
Hw = 0.0
eos = eos
length = 1.
n_elems = 3
position = '0 5.2 4.0'
type = Pipe

[../]
[./pipe2-SC-A]

A = 1.3122
orientation = '0 1 0'
Dh = 0.914
f = 0.001
Hw = 0.0
eos = eos
length = 1.
n_elems = 3
position = '0 4.2 8.0'
type = Pipe

[../]
[./Branch1-A]
inputs = pipe1-HL-A(out)
Area = 7.562307456
outputs = 'pipe2-HL-A(in) pipe-to-Pressurizer(in)'
K = '0.5 0.7 80.'
eos = eos
Initial_pressure = 151.7e5
type = ErgBranch

[../]
[./Branch2-A]
inputs = pipe1-CL-A(out)
Area = 3.6185734
outputs = DownComer-A(in)
K = '0.5 0.7'
eos = eos
Initial_pressure = 151.7e5
type = ErgBranch

[../]
[./Branch3-A]
inputs = pipe2-HL-A(out)
Area = 2.624474
outputs = HX-A(primary_in)
K = '0.5 0.7'
eos = eos
Initial_pressure = 151.7e5
type = ErgBranch

[../]
[./Pump-A]

inputs = pipe2-CL-A(out)
Head = 8.9
Area = 2.624474
outputs = pipe1-CL-A(in)
eos = eos
Initial_pressure = 151.7e5
K_reverse = '2000 2000'
type = Pump

[../]
[./HX-A]

orientation = '0 0 -1'
aw = 539.02
n_elems = 10
A_secondary = 5
material_wall = wall-mat
wall_thickness = 0.001
Dh = 0.01
Twall_init = 564.15
Hw = 1.e4
aw_secondary = 539.02
eos_secondary = eos
type = HeatExchanger
A = 5.0
Dh_secondary = 0.001
Hw_secondary = 1.e4
n_wall_elems = 2
Cp_wall = 100.0
f_secondary = 0.01
rho_wall = 100.0
k_wall = 100.0
f = 0.01
eos = eos
length = 4.
position = '0 4. 8.'
dim_wall = 1

[../]
[./Branch4-A]
inputs = pipe1-SC-A(out)
Area = 2.624474e2
outputs = HX-A(secondary_in)
K = '0.5 0.7'
eos = eos
Initial_pressure = 151.7e5
type = ErgBranch

[../]
[./Branch5-A]
inputs = HX-A(secondary_out)
Area = 2.624474e2
outputs = pipe2-SC-A(in)
K = '0.5 0.7'
eos = eos
Initial_pressure = 151.7e5
type = ErgBranch

[../]
[./Branch6-A]
inputs = HX-A(primary_out)
Area = 2.624474e2
outputs = pipe2-CL-A(in)
K = '0.5 0.7'
eos = eos
Initial_pressure = 151.7e5
type = ErgBranch

[../]
[./PressureOutlet-SC-A]

eos = eos
input = pipe2-SC-A(out)
p_bc = 151.7e5
type = TimeDependentVolume
T_bc = 564.15

[../]

[./DownComer-B]
A = 3.6185734
orientation = '0 0 -1'
Dh = 1.74724302
f = 0.001
Hw = 0.
eos = eos
length = 4
n_elems = 3
position = '0 -2.0 4.0'
type = Pipe

[../]
[./pipe1-HL-B]

A = 7.562307456
orientation = '0 0 1'
Dh = 3.103003207
f = 0.001
Hw = 0.0
eos = eos
length = 4.
n_elems = 3
position = '0 -0.5 4.0'
type = Pipe

[../]
[./pipe2-HL-B]

A = 2.624474
orientation = '0 -1 0'
Dh = 1.828
f = 0.001
Hw = 0.0
eos = eos
length = 3.5
n_elems = 3
position = '0 -0.5 8.0'
type = Pipe

[../]
[./pipe1-CL-B]

A = 2.624474
orientation = '0 1 0'
Dh = 1.828
f = 0.001
Hw = 0.0
eos = eos
length = 1.
n_elems = 3
position = '0 -3.0 4.0'
type = Pipe

[../]
[./pipe2-CL-B]

A = 2.624474
orientation = '0 1 0'
Dh = 1.828
f = 0.001
Hw = 0.0
eos = eos
length = 0.8
n_elems = 3
position = '0 -4.0 4.0'
type = Pipe

[../]
[./pipe1-SC-B]

A = 1.3122
orientation = '0 1 0'
Dh = 0.914
f = 0.001
Hw = 0.0
eos = eos
length = 1.
n_elems = 3
position = '0 -5.2 4.0'

type = Pipe
[../]
[./pipe2-SC-B]

A = 1.3122
orientation = '0 -1 0'
Dh = 0.914
f = 0.001
Hw = 0.0
eos = eos
length = 1.
n_elems = 3
position = '0 -4.2 8.0'
type = Pipe

[../]
[./Branch1-B]
inputs = pipe1-HL-B(out)
Area = 7.562307456
outputs = pipe2-HL-B(in)
K = '0.5 0.7'
eos = eos
Initial_pressure = 151.7e5
type = ErgBranch

[../]
[./Branch2-B]
inputs = pipe1-CL-B(out)
Area = 3.6185734
outputs = DownComer-B(in)
K = '0.5 0.7'
eos = eos
Initial_pressure = 151.7e5
type = ErgBranch

[../]
[./Branch3-B]
inputs = pipe2-HL-B(out)
Area = 2.624474
outputs = HX-B(primary_in)
K = '0.5 0.7'
eos = eos
Initial_pressure = 151.7e5
type = ErgBranch

[../]
[./Pump-B]
inputs = pipe2-CL-B(out)
Head = 8.9
Area = 2.624474
outputs = pipe1-CL-B(in)
eos = eos
Initial_pressure = 151.7e5
K_reverse = '2000 2000'
type = Pump

[../]
[./HX-B]

orientation = '0 0 -1'
aw = 539.02
n_elems = 10
A_secondary = 5 # 5.
material_wall = wall-mat
wall_thickness = 0.001
Dh = 0.01
Twall_init = 564.15
Hw = 1.e4
aw_secondary = 539.02 # 539.02
eos_secondary = eos
type = HeatExchanger
A = 5.
Dh_secondary = 0.001
Hw_secondary = 1.e4
n_wall_elems = 2
Cp_wall = 100.0
f_secondary = 0.01

rho_wall = 100.0
k_wall = 100.0
f = 0.01
eos = eos
length = 4.
position = '0 -4. 8.'
disp_mode = -1.0

[../]
[./Branch4-B]
inputs = pipe1-SC-B(out)
Area = 2.624474e2
outputs = HX-B(secondary_in)
K = '0.5 0.7'
eos = eos
Initial_pressure = 151.7e5
type = ErgBranch

[../]
[./Branch5-B]
inputs = HX-B(secondary_out)
Area = 2.624474e2
outputs = pipe2-SC-B(in)
K = '0.5 0.7'
eos = eos
Initial_pressure = 151.7e5
type = ErgBranch

[../]
[./Branch6-B]
inputs = HX-B(primary_out)
Area = 2.624474e2
outputs = pipe2-CL-B(in)
K = '0.5 0.7'
eos = eos
Initial_pressure = 151.7e5
type = ErgBranch

[../]
[./PressureOutlet-SC-B]

eos = eos
input = pipe2-SC-B(out)
p_bc = 151.7e5
type = TimeDependentVolume
T_bc = 564.15

[../]
[./pipe-to-Pressurizer]

A = 2.624474
orientation = '0 0 1'
Dh = 1.828
f = 10.
Hw = 0.0
eos = eos
length = 0.5
n_elems = 3
position = '0 0.5 8.0'
type = Pipe

[../]
[./Pressurizer]

eos = eos
input = pipe-to-Pressurizer(out)
p_bc = 151.7e5
type = TimeDependentVolume
T_bc = 564.15

[../]
[./MassFlowRateIn-SC-B]

v_bc = 2.542 # 4.542
input = pipe1-SC-B(in)
type = TimeDependentJunction
eos = eos
T_bc = 537.15

[../]
v_bc = 2.542 # 4.542
input = pipe1-SC-A(in)

type = TimeDependentJunction
eos = eos
T_bc = 537.15

[../]
[]
[Preconditioning]

active = 'SMP_PJFNK'
[./SMP_PJFNK]
petsc_options_iname = '-mat_fd_type -mat_mffd_type'
full = true
type = SMP
petsc_options_value = 'ds ds'
petsc_options = -snes_mf_operator

[../]
[./SMP]

full = true
type = SMP
petsc_options = -snes_mf_operator

[../]
[./FDP_PJFNK]
petsc_options_iname = -mat_fd_type
full = true
type = FDP
petsc_options_value = ds
petsc_options = '-snes_mf_operator -

pc_factor_shift_nonzero'
[../]
[./FDP_Newton]
petsc_options_iname = -mat_fd_type
full = true
type = FDP
petsc_options_value = ds
petsc_options = -snes

[../]
[]

[Executioner]
nl_abs_tol = 1e-8
restart_file_base =

TMI_test_PRA_transient_less_w_ss_out_restart_0831
nl_rel_tol = 1e-5
ss_check_tol = 1e-05
perf_log = true
nl_max_its = 120
type = RavenExecutioner
max_increase = 3
petsc_options_value = lu # '300'
l_max_its = 100 # of linear iterations for each Krylov solve
start_time = 100.0
predictor_scale = 0.6
dtmax = 9999
nl_rel_step_tol = 1e-3
dt = 5e-5
petsc_options_iname = -pc_type
e_tol = 10.0
l_tol = 1e-5 # Relative linear tolerance for each Krylov

solve
end_time = 2500.0
e_max = 99999.
[./TimeStepper]
type = FunctionDT
time_t = ' 0 1. 61.1 100.8 101.5 102.2 120.0 2501.23 1.0e5'
time_dt = '1.e-1 0.40 0.45 0.09 0.1 0.008 0.2 0.21 0.2 0.6'

[../]
[./Quadrature]
type = TRAP
order = FIRST

[../]
[]
[Output]

output_initial = true
output_displaced = true
file_base = TMI_test_PRA_transient_less_w_out
exodus = true
postprocessor_csv = true
max_pps_rows_screen = 25

[]
[Controlled]

control_logic_input = TMI_PRA_trans_MC_control
[./power_CH1]
print_csv = true
data_type = double
property_name = FUEL:power_fraction
component_name = CH1

[../]
[./power_CH2]
print_csv = true
data_type = double
property_name = FUEL:power_fraction
component_name = CH2

[../]
[./power_CH3]
print_csv = true
data_type = double
property_name = FUEL:power_fraction
component_name = CH3

[../]
[./MassFlowRateIn_SC_A]
print_csv = true
data_type = double
property_name = v_bc
component_name = MassFlowRateIn-SC-A

[../]
[./MassFlowRateIn_SC_B]
print_csv = true
data_type = double
property_name = v_bc
component_name = MassFlowRateIn-SC-B

[../]
[./Head_PumpB]
print_csv = true
data_type = double
property_name = Head
component_name = Pump-B

[../]
[./Head_PumpA]
print_csv = true
data_type = double
property_name = Head
component_name = Pump-A

[../]
[./friction1_SC_A]
print_csv = false
data_type = double
property_name = f
component_name = pipe1-SC-A

[../]
[./friction2_SC_A]
print_csv = false
data_type = double
property_name = f
component_name = pipe2-SC-A

[../]
[./friction1_SC_B]
print_csv = false
data_type = double
property_name = f
component_name = pipe1-SC-B

[../]
[./friction2_SC_B]

print_csv = false
data_type = double
property_name = f
component_name = pipe2-SC-B

[../]
[./friction1_CL_B]
print_csv = false
data_type = double
property_name = f
component_name = pipe1-CL-B

[../]
[./friction2_CL_B]
print_csv = false
data_type = double
property_name = f
component_name = pipe2-CL-B

[../]
[./friction1_CL_A]
print_csv = false
data_type = double
property_name = f
component_name = pipe1-CL-A

[../]
[./friction2_CL_A]
print_csv = false
data_type = double
property_name = f
component_name = pipe2-CL-A

[../]
[]
[Monitored]

[./avg_temp_clad_CH1]
operator = ElementAverageValue
path = CLAD:TEMPERATURE
data_type = double
component_name = CH1

[../]
[./avg_temp_clad_CH2]

operator = ElementAverageValue
path = CLAD:TEMPERATURE
data_type = double
component_name = CH2

[../]
[./avg_temp_clad_CH3]

operator = ElementAverageValue
path = CLAD:TEMPERATURE
data_type = double
component_name = CH3

[../]
[./avg_Fluid_Vel_H_L-A]

operator = ElementAverageValue
path = VELOCITY
data_type = double
component_name = pipe1-HL-A

[../]
[./avg_Fluid_Vel_C_L_A]

operator = ElementAverageValue
path = VELOCITY
data_type = double
component_name = DownComer-A

[../]
[./avg_out_temp_sec_A]

operator = ElementAverageValue
path = TEMPERATURE
data_type = double
component_name = pipe2-SC-A

[../]
[./DownStreamSpeed]

operator = ElementAverageValue
path = VELOCITY

data_type = double
component_name = pipe1-CL-B

[../]
[./UpstreamSpeed]

operator = ElementAverageValue
path = VELOCITY
data_type = double
component_name = pipe1-CL-B

[../]
[./avg_temp_fuel_CH1]

operator = ElementAverageValue
path = FUEL:TEMPERATURE
data_type = double
component_name = CH1

[../]
[./avg_temp_fuel_CH2]

operator = ElementAverageValue
path = FUEL:TEMPERATURE
data_type = double
component_name = CH2

[../]
[./avg_temp_fuel_CH3]

operator = ElementAverageValue
path = FUEL:TEMPERATURE
data_type = double
component_name = CH3

[../]
[./sec_inlet_velocity]

operator = ElementAverageValue
path = VELOCITY
data_type = double
component_name = pipe1-SC-A

[../]
[]
[Distributions]

RNG_seed = 1
[./crew1DG1]
type = NormalDistribution
mu = 800
sigma = 200
xMin = 0.0
xMax = 2500

[../]
[./crew1DG2CoupledDG1]
type = UniformDistribution
xMin = 0.5
xMax = 1

[../]
[./crewSecPG]
type = NormalDistribution
mu = 1400
sigma = 400

[../]
[./PrimPGrecovery]
type = NormalDistribution
mu = 2000
sigma = 500

[../]
[./CladFailureDist]
type = TriangularDistribution
xMin = 1255.3722
xPeak = 1477.59
xMax = 1699.8167
truncation = 1
lowerBound = 1255.3722
upperBound = 1699.8167

[../]
[]
[RavenAuxiliary]

[./init_exp_frict]

print_csv = false
data_type = bool
initial_value = True

[../]
[./frict_m]
print_csv = false
data_type = double
initial_value = -1005.56

[../]
[./frict_q]
print_csv = false
data_type = double
initial_value = 10005.1

[../]
[./scram_start_time]
print_csv = true
data_type = double
initial_value = 101.0

[../]
[./friction_time_start_exp]
print_csv = false
data_type = double
initial_value = 0.0

[../]
[./InitialMassFlowPrimary]
print_csv = true
data_type = double
initial_value = 0

[../]
[./initialInletSecPress]
print_csv = false
data_type = double
initial_value = 15219000

[../]
[./CladDamaged]
print_csv = true
data_type = bool
initial_value = False

[../]
[./DeltaTimeScramToAux]
print_csv = true
data_type = double
initial_value = 200.0

[../]
[./InitialOutletSecPress]
print_csv = false
data_type = double
initial_value = 151.7e5 # 15170000

[../]
[./CladTempTreshold]
print_csv = true
data_type = double
initial_value = 1477.59

[../]
[./ScramStatus]
print_csv = true
data_type = bool
initial_value = false

[../]
[./AuxSystemUp]
print_csv = true
data_type = bool
initial_value = false

[../]
[./init_Power_Fraction_CH1]
print_csv = true
data_type = double
initial_value = 3.33672612e-1

[../]
[./init_Power_Fraction_CH2]

print_csv = true
data_type = double
initial_value = 3.69921461e-1

[../]
[./init_Power_Fraction_CH3]
print_csv = true
data_type = double
initial_value = 2.96405926e-1

[../]
[./a_power_CH1]
print_csv = true
data_type = double
initial_value = 3.33672612e-1

[../]
[./a_power_CH2]
print_csv = true
data_type = double
initial_value = 3.69921461e-1

[../]
[./a_power_CH3]
print_csv = true
data_type = double
initial_value = 2.96405926e-1

[../]
[./a_MassFlowRateIn_SC_A]
print_csv = true
data_type = double
initial_value = 2.542

[../]
[./a_MassFlowRateIn_SC_B]
print_csv = true
data_type = double
initial_value = 2.542

[../]
[./a_Head_PumpB]
print_csv = true
data_type = double
initial_value = 8.9

[../]
[./a_Head_PumpA]
print_csv = true
data_type = double
initial_value = 8.9

[../]
[./a_friction1_SC_A]
print_csv = false
data_type = double
initial_value = 0.001

[../]
[./a_friction2_SC_A]
print_csv = false
data_type = double
initial_value = 0.001

[../]
[./a_friction1_SC_B]
print_csv = false
data_type = double
initial_value = 0.001

[../]
[./a_friction2_SC_B]
print_csv = false
data_type = double
initial_value = 0.001

[../]
[./a_friction1_CL_B]
print_csv = false
data_type = double
initial_value = 0.001

[../]
[./a_friction2_CL_B]

print_csv = true
data_type = double
initial_value = 0.001

[../]
[./a_friction1_CL_A]
print_csv = false
data_type = double
initial_value = 0.001

[../]
[./a_friction2_CL_A]
print_csv = true
data_type = double
initial_value = 0.001

[../]
[./CladTempTresholdRNG]
print_csv = true
data_type = double
initial_value = 0

[../]
[./auxAbsolute]
print_csv = true
data_type = double
initial_value = 0.001

[../]
[./DG1recoveryTime]
data_type = double
print_csv = true
initial_value = 900

[../]
[./DG2recoveryTime]
data_type = double
print_csv = true
initial_value = 675

[../]
[./SecPGrecoveryTime]
data_type = double
print_csv = true
initial_value = 1800

[../]
[./PrimPGrecoveryTime]
data_type = double
print_csv = true
initial_value = 2000

[../]
[]
[TimeController]

[./cntrAux]
comparisonID = auxAbsolute
time_step_size = 0.01
referenceID = time
delta = 0.5

[../]
[]
[RavenTools]

[./PumpCoastDown]
type = pumpCoastdownExponential
coefficient = 26.5
initial_flow_rate = 8.9

[../]
[./DecayHeatScalingFactor]
type = decayHeat
eq_type = 1
initial_pow = 1
operating_time = 20736000
power_coefficient = 0.74

[../]
[./PumpCoastDownSec]
type = pumpCoastdownExponential
coefficient = 10.5
initial_flow_rate = 1.0

[../]
[]

1

6.1.2 Control Logic Input

import sys
import math
import distribution1D
import raventools
initialize distribution container
distcont = distribution1D.DistributionContainer.Instance()
toolcont = raventools.RavenToolsContainer.Instance()

def control_function(monitored, controlled, auxiliary):
 auxiliary.DeltaTimeScramToAux =
 min(auxiliary.DG1recoveryTime+auxiliary.DG2recoveryTime , auxiliary.SecPGrecoveryTime, auxiliary.PrimPGrecoveryTime)

 auxiliary.auxAbsolute = auxiliary.scram_start_time+auxiliary.DeltaTimeScramToAux

 if monitored.time>=(auxiliary.scram_start_time+auxiliary.DeltaTimeScramToAux) and auxiliary.ScramStatus:
 auxiliary.AuxSystemUp = True
 if (monitored.avg_temp_clad_CH1>auxiliary.CladTempTreshold) or (monitored.avg_temp_clad_CH2>auxiliary.CladTempTreshold) or
(monitored.avg_temp_clad_CH3>auxiliary.CladTempTreshold):
 auxiliary.CladDamaged = True
 auxiliary.a_power_CH1 = controlled.power_CH1
 auxiliary.a_power_CH2 = controlled.power_CH2
 auxiliary.a_power_CH3 = controlled.power_CH3
 auxiliary.a_friction2_CL_B = controlled.friction2_CL_B
 auxiliary.a_friction1_CL_B = controlled.friction1_CL_B
 auxiliary.a_friction2_SC_B = controlled.friction2_SC_B
 auxiliary.a_friction1_SC_B = controlled.friction1_SC_B
 auxiliary.a_friction2_CL_A = controlled.friction2_CL_A
 auxiliary.a_friction1_CL_A = controlled.friction1_CL_A
 auxiliary.a_friction2_SC_A = controlled.friction2_SC_A
 auxiliary.a_friction1_SC_A = controlled.friction1_SC_A
 auxiliary.a_Head_PumpB = controlled.Head_PumpB
 auxiliary.a_Head_PumpA = controlled.Head_PumpA
 auxiliary.a_MassFlowRateIn_SC_B = controlled.MassFlowRateIn_SC_B
 auxiliary.a_MassFlowRateIn_SC_A = controlled.MassFlowRateIn_SC_A

 if monitored.time>=auxiliary.scram_start_time:
 auxiliary.ScramStatus = True
 print('SCRAM')
 else:
 auxiliary.ScramStatus = False
 print('OPERATIONAL STATE')
 #
 if auxiliary.ScramStatus: #we are in scram
 #primary pump B
 if auxiliary.a_Head_PumpB>1.e-4*8.9:
 if not auxiliary.AuxSystemUp: # not yet auxiliary system up
 auxiliary.a_Head_PumpB = toolcont.compute('PumpCoastDown',monitored.time-auxiliary.scram_start_time)
 if auxiliary.a_Head_PumpB < (1.e-4*8.9):
 auxiliary.a_Head_PumpB = 1.e-4*8.9
 auxiliary.a_friction1_SC_B = auxiliary.frict_m*auxiliary.a_Head_PumpB + auxiliary.frict_q
 auxiliary.a_friction2_SC_B = auxiliary.frict_m*auxiliary.a_Head_PumpB + auxiliary.frict_q
 auxiliary.a_friction1_CL_B = auxiliary.frict_m*auxiliary.a_Head_PumpB + auxiliary.frict_q
 auxiliary.a_friction2_CL_B = auxiliary.frict_m*auxiliary.a_Head_PumpB + auxiliary.frict_q
 else: #system up
 if auxiliary.init_exp_frict:
 auxiliary.friction_time_start_exp = auxiliary.a_friction1_SC_B
 auxiliary.init_exp_frict = False
 if auxiliary.a_Head_PumpB <= 0.05*8.9:
 auxiliary.a_Head_PumpB = auxiliary.a_Head_PumpB*1.5
 if auxiliary.a_Head_PumpB > 0.05*8.9:
 auxiliary.a_Head_PumpB = 0.05*8.9
 if auxiliary.a_friction1_SC_B > 0.1:
 auxiliary.a_friction1_SC_B = auxiliary.friction_time_start_exp*math.exp(-(monitored.time-
(auxiliary.scram_start_time++100.0))/4.0)
 auxiliary.a_friction2_SC_B = auxiliary.a_friction1_SC_B

2

 auxiliary.a_friction1_CL_B = auxiliary.a_friction1_SC_B
 auxiliary.a_friction2_CL_B = auxiliary.a_friction1_SC_B
 else:
 auxiliary.a_friction1_SC_B = 0.1
 auxiliary.a_friction2_SC_B = 0.1
 auxiliary.a_friction1_CL_B = 0.1
 auxiliary.a_friction2_CL_B = 0.1
 else:
 auxiliary.a_Head_PumpB = toolcont.compute('PumpCoastDown',monitored.time-auxiliary.scram_start_time)
 if auxiliary.a_Head_PumpB < (1.e-4*8.9):
 auxiliary.a_Head_PumpB = 1.e-4*8.9
 if auxiliary.a_friction1_SC_B > 0.1:
 auxiliary.a_friction1_SC_B = auxiliary.friction_time_start_exp*math.exp(-(monitored.time-
(auxiliary.scram_start_time++100.0))/4.0)
 auxiliary.a_friction2_SC_B = auxiliary.a_friction1_SC_B
 auxiliary.a_friction1_CL_B = auxiliary.a_friction1_SC_B
 auxiliary.a_friction2_CL_B = auxiliary.a_friction1_SC_B
 else:
 auxiliary.a_friction1_SC_B = 0.1
 auxiliary.a_friction2_SC_B = 0.1
 auxiliary.a_friction1_CL_B = 0.1
 auxiliary.a_friction2_CL_B = 0.1
 else:
 if not auxiliary.AuxSystemUp: # not yet auxiliary system up
 auxiliary.a_Head_PumpB = 1.e-4*8.9
 auxiliary.a_friction1_SC_B = 15000
 auxiliary.a_friction2_SC_B = 15000
 auxiliary.a_friction1_CL_B = 15000
 auxiliary.a_friction2_CL_B = 15000
 else:
 if auxiliary.init_exp_frict:
 auxiliary.friction_time_start_exp = auxiliary.a_friction1_SC_B
 auxiliary.init_exp_frict = False
 if auxiliary.a_Head_PumpB <= 0.05*8.9:
 auxiliary.a_Head_PumpB = auxiliary.a_Head_PumpB*1.5
 if auxiliary.a_Head_PumpB > 0.05*8.9:
 auxiliary.a_Head_PumpB = 0.05*8.9
 if auxiliary.a_friction1_SC_B > 0.1:
 auxiliary.a_friction1_SC_B = auxiliary.friction_time_start_exp*math.exp(-(monitored.time-
(auxiliary.scram_start_time++100.0))/4.0)
 auxiliary.a_friction2_SC_B = auxiliary.a_friction1_SC_B
 auxiliary.a_friction1_CL_B = auxiliary.a_friction1_SC_B
 auxiliary.a_friction2_CL_B = auxiliary.a_friction1_SC_B
 else:
 auxiliary.a_friction1_SC_B = 0.1
 auxiliary.a_friction2_SC_B = 0.1
 auxiliary.a_friction1_CL_B = 0.1
 auxiliary.a_friction2_CL_B = 0.1
 else:
 auxiliary.a_Head_PumpB = toolcont.compute('PumpCoastDown',monitored.time-auxiliary.scram_start_time)
 auxiliary.a_friction1_SC_B = auxiliary.frict_m*auxiliary.a_Head_PumpB + auxiliary.frict_q
 auxiliary.a_friction2_SC_B = auxiliary.frict_m*auxiliary.a_Head_PumpB + auxiliary.frict_q
 auxiliary.a_friction1_CL_B = auxiliary.frict_m*auxiliary.a_Head_PumpB + auxiliary.frict_q
 auxiliary.a_friction2_CL_B = auxiliary.frict_m*auxiliary.a_Head_PumpB + auxiliary.frict_q
 #primary pump A
 auxiliary.a_Head_PumpA = auxiliary.a_Head_PumpB
 auxiliary.a_friction1_SC_A = auxiliary.a_friction1_SC_B
 auxiliary.a_friction2_SC_A = auxiliary.a_friction2_SC_B
 auxiliary.a_friction1_CL_A = auxiliary.a_friction1_CL_B
 auxiliary.a_friction2_CL_A = auxiliary.a_friction2_CL_B

 #core power following decay heat curve
 auxiliary.a_power_CH1 = auxiliary.init_Power_Fraction_CH1*toolcont.compute('DecayHeatScalingFactor',monitored.time-
auxiliary.scram_start_time)
 auxiliary.a_power_CH2 = auxiliary.init_Power_Fraction_CH2*toolcont.compute('DecayHeatScalingFactor',monitored.time-
auxiliary.scram_start_time)
 auxiliary.a_power_CH3 = auxiliary.init_Power_Fraction_CH3*toolcont.compute('DecayHeatScalingFactor',monitored.time-
auxiliary.scram_start_time)
 #secondary system replaced by auxiliary secondary system

3

 if not auxiliary.AuxSystemUp and auxiliary.ScramStatus: # not yet auxiliary system up
 print('not yet auxiliary system up')
 auxiliary.a_MassFlowRateIn_SC_B = 2.542*toolcont.compute('PumpCoastDownSec',monitored.time-auxiliary.scram_start_time)
 auxiliary.a_MassFlowRateIn_SC_A = 2.542*toolcont.compute('PumpCoastDownSec',monitored.time-auxiliary.scram_start_time)
 if auxiliary.a_MassFlowRateIn_SC_A < (1.e-4*2.542):
 auxiliary.a_MassFlowRateIn_SC_A = 1.e-4*2.542
 auxiliary.a_MassFlowRateIn_SC_B = 1.e-4*2.542
 if auxiliary.AuxSystemUp and auxiliary.ScramStatus: # auxiliary system up
 print('auxiliary system up')
 auxiliary.a_MassFlowRateIn_SC_B = auxiliary.a_MassFlowRateIn_SC_B*1.5
 auxiliary.a_MassFlowRateIn_SC_A = auxiliary.a_MassFlowRateIn_SC_B
 if auxiliary.a_MassFlowRateIn_SC_B > 2.542*0.05:
 auxiliary.a_MassFlowRateIn_SC_B = 2.542*0.05
 auxiliary.a_MassFlowRateIn_SC_A = 2.542*0.05
 # we work on auxiliaries and we store them back into controlleds
 controlled.power_CH1 = auxiliary.a_power_CH1
 controlled.power_CH2 = auxiliary.a_power_CH2
 controlled.power_CH3 = auxiliary.a_power_CH3
 controlled.friction2_CL_B = auxiliary.a_friction2_CL_B
 controlled.friction1_CL_B = auxiliary.a_friction1_CL_B
 controlled.friction2_SC_B = auxiliary.a_friction2_SC_B
 controlled.friction1_SC_B = auxiliary.a_friction1_SC_B
 controlled.friction2_CL_A = auxiliary.a_friction2_CL_A
 controlled.friction1_CL_A = auxiliary.a_friction1_CL_A
 controlled.friction2_SC_A = auxiliary.a_friction2_SC_A
 controlled.friction1_SC_A = auxiliary.a_friction1_SC_A
 controlled.Head_PumpB = auxiliary.a_Head_PumpB
 controlled.Head_PumpA = auxiliary.a_Head_PumpA
 controlled.MassFlowRateIn_SC_B = auxiliary.a_MassFlowRateIn_SC_B
 controlled.MassFlowRateIn_SC_A = auxiliary.a_MassFlowRateIn_SC_A
 if auxiliary.CladDamaged:
 raise NameError ('exit condition reached - failure of the clad')
 return

