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INTRODUCTION  
 
The Risk Informed Safety Margins Characterization 

(RISMC) Pathway under the U.S. Department of Energy 
Light Water Sustainability Program uses a systematic 
approach developed to characterize and quantify safety 
margins of nuclear power plant structures, systems and 
components. What differentiates the RISMC approach 
from traditional probabilistic risk assessment (PRA) is the 
concept of a safety margin. In PRA, a safety metric such 
as core damage frequency (CDF) is generally estimated 
using static fault-tree and event-tree models. However, it 
is not possible to estimate how close we are to physical 
safety limits (say peak clad temperature) for most 
accident sequences described in the PRA. 

In the RISMC approach, what we want to understand 
is not just the frequency of an event like core damage, but 
how close we are (or not) to this event and how we might 
increase our safety margin through margin management 
strategies in a Dynamic PRA (DPRA) [1] fashion. 

This paper gives an overview of methods that are 
currently under development at the Idaho National 
Laboratory (INL) with the scope of advance the current 
state of the art of dynamic PRA. 
 
TOOLS TO PERFORM DPRA AND UQ 
 

In order to perform DPRA type of analysis, RISMC 
is relying on a code under development at INL: Reactor 
Analysis and Virtual Control Environment (RAVEN) [2]. 
 

 
Figure 1. Overview of the RAVEN code [2] 

RAVEN (see Fig. 1) is a tool that is able to perform 
both DPRA and uncertainty propagation (UQ). It is 

coupled with another code under development (RELAP-7 
[3]) using the MOOSE [4] framework. Both DPRA and 
UQ analysis are controlled by RAVEN that acts as a 
controller of each RELAP-7 simulation run. 

RAVEN has been developed in a modular and 
pluggable way in order to enable integration of different 
programming languages (i.e., C++, Python) and coupling 
with other applications including the ones based on 
MOOSE. The code consists of four main modules (see 
Fig. 1): 
• RAVEN/RELAP-7 interface 
• Python Control Logic 
• Python Calculation Driver 
• Graphical User Interface 

The RAVEN/RELAP-7 interface, coded in C++, is 
the container of all the tools needed to interact with 
RELAP-7/MOOSE. It has been designed in order to be 
general and extendable with different solvers 
simultaneously in order to allow an easier and faster 
development of the control logic/PRA capabilities for 
multi-physics applications. The interface provides all the 
capabilities to control, monitor, and process the 
parameters/quantities in order to drive the RELAP-
7/MOOSE calculation. In addition, it contains the tools to 
communicate to the MOOSE input parser whose 
information, i.e. input syntax, must be received as input in 
order to run a RAVEN calculation. 

The control logic module is used to drive a 
RAVEN/RELAP-7 calculation. The implementation of 
the control logic via Python is rather convenient and 
flexible. The user only needs to know few Python syntax 
rules in order to build an input. Although this simplicity 
exists, it will be part of the GUI task to automatize the 
construction of the control logic scripting in order to 
minimize user efforts. 

The core of PRA analysis is contained in the module 
called "Raven Runner." It consists in a Python driver in 
which Monte-Carlo based algorithm has been 
implemented. It calls RAVEN multiple times, changes 
initial conditions and seeds the random generator for the 
distributions (DPRA and UQ). The multiple calculations, 
required by the employment of these algorithms, can be 
run in parallel, using queues/sub-process/Python systems. 

 
METHODS TO PREDICT SYSTEM BEHAVIORS 

 
Nuclear simulations are often computationally 

expensive, time-consuming, and high-dimensional with 
respect to the number of input parameters. Thus exploring 
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the space of all possible simulation outcomes is infeasible 
using finite computing resources. However, this is a 
typical context for performing adaptive sampling where a 
few observations are obtained from the simulation, a 
surrogate model is built in order predict behavior of the 
system (e.g., maximum core temperature), and new 
samples are selected based on the model constructed (see 
Fig. 2 top).  

The surrogate model is then updated based on the 
simulation results of the sampled points. In this way, we 
attempt to gain the most information possible with a small 
number of carefully selected sample points, limiting the 
number of expensive trials needed to understand features 
of the simulation space. From a safety point of view, we 
are interested in identifying the limit surface (see Fig. 2 
bottom), i.e., the boundaries in the simulation space 
between system failure and system success.  

The generic structure of an adaptive sampling 
algorithm is shown in Fig. 3. Two classes of algorithms 
have been evaluated and are being implemented within 
RAVEN: 

• Discrete: model generated predicts simulation 
outcome in a binary fashion, e.g., system failure 
or system success 

• Continuous: model generated predicts an 
estimate of simulation outcome, e.g., maximum 
temperature reached in the core 
 

 

 
Figure 2. Max core temperature as function of 2 parameters 

and limit/fail temperature (top) and plot of their 
intersection:  limit surface (bottom) 

In the first class, Support Vector Machines (SVMs) 

have proven to be flexible to model limit surface of an 
arbitrary shape [5]. The only limitation is that the 
surrogate model only predicts the simulation outcome in a 
binary form (failure or success) and does not give any 
quantitative information of the variables of interest (e.g., 
max core temperature). Consequently, we then investigate 
algorithms that can generate continuous reduced order 
models based on Gaussian Process Models (GPMs). 

We the started to evaluate GPM methods (e.g., 
Kriging method) and then developed more advanced 
algorithms based on topological constructions of the 
surrogate model (through Morse-Smale complexes) [6]. 

 

 
Figure 3. Generic scheme for adaptive sampling algorithms 
 

 

 
Figure 4. Limit surface obtained for a simplified PWR 

system for a SBO scenario after 10 (top) and 60 (bottom) 
samples [5] 
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These surrogate models are such that they can predict 
a specific simulation outcome (e.g., max core 
temperature) . Analogously it would be possible to build a 
surrogate model that can predict the time at which a 
certain simulation outcome is reached.  

Such prediction capabilities led us to investigate also 
the possibility to modify adaptive sampling schemes to 
predict, temporally, the full profile of a simulation given a 
set of training simulation runs. 

 

 
Figure 5. Temporal prediction of simulation runs: training 

simulations (top) and predicted results (bottom) 

Preliminary results shown in Fig. 5 indicate the set of 
training simulation runs (Fig. 5 top) and predicting results 
(Fig. 5 bottom). Note that predicted results are displayed 
in terms of predicted scenario and uncertainties associated 
to the prediction (light green band around the green line). 

 
METHODS TO GENERATE KNOWLDEDGE 
FROM DATA 
 

The ability to analyze and identify correlations 
among timing of events through system 
dynamics/software/human action interactions is essential 
for nuclear power plant safety analysis and post-
processing of the data generated by DPRA methodologies 
is still a research topic. 

A first approach toward discovering these 
correlations from data generated by DPRA methodologies 
has been developed using Fuzzy classification. However, 
clustering algorithms have allowed users to fully analyze 

these correlations by considering the complete system 
dynamics and not only the final outcome [7].  
 

 

 
Figure 6. Original data (top), clustered data (middle) and 

timing of events associated to a cluster (bottom)[7] 

Clustering based algorithms can be used to identify 
groups (i.e., clusters) of scenarios having similar temporal 
behavior of the state variables. An example [7] is shown 
in Fig. 6 for a data set generated using ADAPT and 
RELAP-5 for an aircraft crash initiating event. A plot of 
all 610 scenarios is shown in Fig. 6 (top); clustering 
algorithm allowed to identify 4 clusters and the 
“representative scenarios” for each of these 4 clusters are 
shown in Fig. 6 (middle). At this point, the analysis can 
be performed by observing the timing of events that lead 
to the scenarios contained in that cluster (Fig. 6 bottom). 

Moreover, clustering algorithms have proven to assist 
the user, for example, in the identification of those 
scenarios having similar temporal behavior but 
characterized by different outcomes only because the 
maximum simulation time was passed. In addition, in [7] 
we showed how clustering algorithms can easily identify 



outliers scenarios, i.e., scenarios characterized by 
erroneous/discontinuous temporal behavior due to the fact 
that the validity boundaries of the code were surpassed. 

It may be possible to combine these ideas, the 
temporal-based adaptive sampling scheme with clustering 
in order to have a powerful method of “surrogate 
modeling” that could prove useful for nuclear safety 
analysis.  This idea remains for future investigation. 
 
CONCLUSIONS 
 

The scope of this paper is to give an overview of the 
tools that RISMC will employ to perform DPRA and UQ 
analysis for nuclear power plants. We have selected 
RAVEN as code to perform such analyses for its 
flexibility to add new algorithms and capabilities. We 
have also indicated a few R&D paths that we believe will 
improve such analyses in terms of computational costs 
reductions and data analysis. We have also indicated how 
the generation surrogate models may come helpful when 
we will extend our capabilities for diagnosis and 
prognosis purposes. 
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