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INTRODUCTION 
 

The development of the RAVEN code [1] [9] started 
in 2012 to provide the needed capabilities to the Risk 
Informed Safety Margins Characterization (RISMC) 
pathway [2] with the capability to forecast safety margins 
for nuclear power plant accident scenarios. The goal was 
achieved by a three way approach providing: 1) A 
graphical user interface for the RELAP-7 code, 2) A 
control logic/scenario generator framework for RELAP-7, 
and 3) A statistical analysis framework to assess safety 
margins. 

This paper focuses on the latest addition to the 
statistical analysis framework, a library of supervised 
learning algorithms to determine the location of limit 
surfaces [10]. 

 
THE IMPORTANCE AND DEFINITION OF LIMIT 
SURFACES IN RISK ANALYSIS 
 

The analysis of risk, in the engineering field, refers to 
the analysis of the probability that a certain event will 
take place multiplied by the consequences associated that 
event. 

More specifically in a mathematical formulation 
given: 

𝑥 ∈ 𝑋: where 𝑋 is phase space of the system S, 
𝑝 𝑥 : probability distribution function of 𝑥, 
𝑐 𝑥 : consequences associated to the outcome 𝑥. 

Risk, or more specifically the differential contribution to 
risk, is defined by: 

𝑝 𝑥 𝑐 𝑥 𝑑𝑥 = 𝑟 𝑥 𝑑𝑥. 
As a consequence the total risk connected to a certain 

system S is given by: 

𝑅 = 𝑝 𝑥 𝑐 𝑥 𝑑𝑥
!

. 

Currently the focus of the RAVEN project, with 
respect to Probabilistic Risk Assessment (PRA), is limited 
to accident scenarios where the nuclear fuel integrity has 
not yet been compromised. In our applications, a binary 
cost function is defined as: 

𝑐 𝑥 =
1, 𝑖𝑓  𝑓𝑢𝑒𝑙  𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦  𝑖𝑠  𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑
0, 𝑖𝑓  𝑓𝑢𝑒𝑙  𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦  𝑖𝑠  𝑛𝑜𝑡  𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒𝑑  

Consequently the total risk evaluation could be 
reduced to: 

𝑅 = 𝑝 𝑥 𝑑𝑥! , 
where the failure region F is defined by: 

𝐹 = 𝑥|𝑥 ∈ 𝑋, 𝑐 𝑥 = 1  

The limit surface 𝜕𝐹 is defined as the boundaries of 
F. 𝜕𝐹 may be identified by a system of constraints that 
will be indicated by 𝑓 𝑥 = 0. 

The importance of the limit surface is clear when 𝜕𝐹  
can be expressed in terms of the initial conditions of the 
system rather than its location in the phase space 𝑥. The 
possibility of defining the constraints representing the 
limit surface location in terms of the input space of the 
system, is related to the stochastic characterization of the 
system S and its phase space definition. Since S is usually 
a dynamic stochastic system, it is not possible to 
establish, for a given set of initial condition 𝑥!, a unique 
trajectory 𝑥 𝑡, 𝑥! . This situation might lead to the 
impossibility to define the location of the limit surface in 
terms only of the initial condition of the system.  

Reference [3] describe more in detail what are the 
characteristics, of a dynamic stochastic system, under 
which the phase space and the corresponding input set, 
could be expanded so that the behavior of the system is 
fully determined once the initial conditions are set. 

When it is possible to uniquely determine the system 
trajectory for a given set of initial conditions the limit 
surface in the initial condition space (to be intended as the 
extended initial condition set as described in [3]) is 
determined by: 

𝜕𝑥!,!" = 𝑥!|∃  𝑡 ∈ 0, 𝑡!"# , 𝑓 𝑥 𝑡, 𝑥! = 0 , 
where 𝑡!"# is the maximum time during which the system 
is monitored. Similarly the input region that is mapped 
into F by the function representing the system evolution 
𝑥 𝑡, 𝑥!  is: 

𝑥!,!" = 𝑥!|∃  𝑡 ∈ 0, 𝑡!"# , 𝑐 𝑥 𝑡, 𝑥! = 1  
Knowing 𝑥!,!" in the input space has a clear value 

since it allows to establishing which region of the input 
space will lead to a an evolution of the system toward a 
specific outcome.  

The risk integral with respect the in the input space is 
then given by: 

𝑅 = 𝑑𝑡
!!"#

!
𝑝 𝑥 𝑡, 𝑥! 𝑐 𝑥 𝑡, 𝑥! 𝑑𝑥

!!,!"
𝑡, 𝑥!  

For the specific binary cost function defined earlier: 
𝑅 = 𝑝 𝑥 𝑑𝑥! = 𝑝 𝑥! 𝑑𝑥!!!,!"

 
 
IDENTIFICATION OF THE LIMIT SURFACE 
 

The problem of the location of the limit surface is to 
determine the non-convex hull surrounding the failure 
region. This type of problem are known for having a large 



computational complexity which reduction is very 
difficult. 

Going back to our simple cost function where 
𝑅 = 𝑝 𝑥 𝑑𝑥! = 𝑝 𝑥! 𝑑𝑥!!!,!"

, we can build a 

Cartesian grid in the input space such that ∆𝑥!
!,! and 𝑥!

!,! 
satisfies: 

𝑝 𝑥!! 𝑑𝑥!!
!!
!,!!∆!!

!,!!!

!!
!,!

=
1
𝑛!

 

𝑥!
!,! = 𝑚𝑖𝑛 𝑥!!  

𝑥!
!,!!!! = 𝑚𝑎𝑥 𝑥!!  

𝑖 = 1,… ,m = dim 𝑥!  
𝑗! = 0,… , 𝑛! 

𝑥!
!,!!!! = 𝑥!

!,!! + ∆𝑥!
!,!!!!, 

so that ∆𝑉!! = ∆𝑥!
!,!!!

!!!  is the control volume (l is the 
global index) and the barycenter (probability weighted) is 
given by: 

 
𝑥!! = 𝑥!

!,!!!!/!,… , 𝑥!
!,!!!!/!,… , 𝑥!

!,!!!!/! , 
 

where: 

𝑝 𝑥!! 𝑑𝑥!!
!!
!,!!!!/!

!!
!,!!

= 𝑝 𝑥!! 𝑑𝑥!!
!!
!,!!!!

!!
!,!!!!/!

. 

Note that the grid built is a regular Cartesian grid 
under the transformation 𝑝 𝑥!! 𝑑𝑥!!=  𝑑𝑥!!!, being therefore 
an equal probable Cartesian partition of the input space. 

The approximations of 𝑥!,!" and 𝜕𝑥!,!" can be written 
as:  

𝑥!,!" ≈ ∆𝑉!!|∃  𝑡 ∈ 0, 𝑡!"# , 𝑐 𝑥 𝑡, 𝑥!! = 1
!

 

𝜕𝑥!,!" ≈ 𝑥!! 𝑥!! ∈ 𝑥!,!",∃𝑖 𝑥!!

!

− 0,… ,−𝑥!
!,!!!

!
!

+ 𝑥!
!,!∓!∓!!,… ,0   𝑛𝑜𝑡   ∈ 𝑥!,!"  

Considering that: 
• the number of points on the grid, to achieve a 

reasonable accuracy, can be rather large 
• the assessment of 𝑐 𝑥 𝑡, 𝑥!

!!!/! = 1
0 requires the 

evaluation of the system response, which in our case 
is a quite expensive RELAP-7 simulation 

in most of the cases a brute force approach leads to 
unreasonable computational costs. 

For this reason several acceleration schemes have 
been proposed to overcome this challenge. RAVEN takes 
advantage of the fact that most of these schemes follow 
the same functional pattern so it is possible to implement 

a software layout that allows a quick integration of any 
new algorithm. 
 
GENERAL ACCELERATION SCHEME FOR THE 
DETERMINATION OF THE LIMIT SURFACE 
 

The determination of the limit surface, relying on the 
evaluation of the system response on a Cartesian grid in 
the input space, is too expensive in most PRA cases. One 
of the classes of acceleration schemes to speed up the 
process is based on Surrogate Models (SMs). For the 
moment we can think of a SM as a mathematical model 
capable of approximating the system response 𝑥 𝑡, 𝑥!  at 
a fraction of the computational cost of the evaluation of 
the original model.  

Generally, the error related to this approximation 
depends on the variation of the system response with 
respect to the input space (!! !,!!

!!!
! ), from the choice of the 

SM and from the number of constraints used to determine 
the values of the parameters characterizing the SM. 

While SMs are used in a large range of mathematical 
end engineering fields, here the naming conventions 
familiar in the artificial intelligence research field are 
used. According to this choice the process of determining 
the parameters of the SM is named as the fit step, the 
process of predicting the system response as the predict 
step, and the overall process as a supervised learning 
process. 
In particular, RAVEN implements a scheme that is more 
specifically called active supervised learning process. 
Active processes differ in that they allow recursive 
training of the SM. The overall scheme is represented in 
Figure 1. 

To test the convergence of the iterative process, we 
are considering several possible options : 

• Test the convergences of the parameters 
describing the SM 

• Test the convergence of 𝜕𝑥!,!" 
Either of these tests can be performed using different 
types of norm such as 𝐿!, 𝐿!, 𝐿!, etc.  

The general policy for choosing the next point where 
the full system model is evaluated is to maximize the 
information gain concerning the variation of the system 
response with respect the input parameters. Several 
options are possible. 
 
LIMIT SURFACE EXAMPLE 
 

To clarify the limit surface concept, it may be helpful 
to show an example that has been obtained from post 
processing of large Monte Carlo samplings generated in 
the past by RAVEN and RELAP-7 [4, 5]. 
The type of system and accident scenario examined is 
explained in mode detail in [5]: a Pressurized Water 
Reactor  (PWR) station blackout scenario. For this 



scenario, the considered input parameters are the recovery 
time of the auxiliary diesel generators (DGs) 𝑡!" , the 
auxiliary power grid connection 𝑡!""#, and the main 
power grid connection 𝑡!!"#. Core damage is reached 
unless AC power is recovered by either external (the two 
power grid connections) or internal (the DGs) means. 

 
 
  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Software scheme of the active super-vised 
learning acceleration to determine the location of the LS. 

In other terms, outcome (core damage) is determined 
by comparing the time to reach fuel failure temperature 
and the AC recovery time 
𝑡!"_!"# = 𝑚𝑖𝑛 𝑡!" , 𝑡!""# , 𝑡!!"# . For such case, the LS in 
this 3-dimensional space (𝑡!" , 𝑡!""# , 𝑡!!"#) is shown in 
Figure 2. 

 
RAVEN IMPLEMENTATION AND TESTING 
 

RAVEN implements a scheme very similar to the one 
described in figure 1. More specifically: 

1. The input points used to generate the initial training 
set are either externally generated or chosen using a 
Monte Carlo approach  

2. The SMs currently available to be trained is the 
support vector machine based classifier available 
through the scikit-learn software library [6], and the 
closest neighbor based classification.  

3. The location of the 𝜕𝑥!,!" is determined on a 
Cartesian grid generated from user input. 

4. The convergence test requires that none of the 
barycenter points of the grid will change its 
classification between two iterations, and this should 
be true for a certain number of times (user input). 

5. The next point to be tested using the full system 
representation is chosen as the barycenter point of the 
grid laying on 𝜕𝑥!,!! which is the farthest point from 
any other already sampled in the input space. 

6. The software tools representing physical systems 
available in this scheme are: RELAP-7, RELAP5-3D 
[7], any MOOSE-based code [8].  A general 
Application Programming Interface (API) is also 
provided to allow independent implementation of a 
physical system representation. 

 

 
 

Figure 2: LS for PWR Station Black Out 

 Currently the whole implementation is in an 
advanced stage of development, Figure 3 shows how, 
after few iterations, the training point (blue) are 
distributed along the LS given defined by 𝑥! + 𝑦! −
25 = 0.  

Real case applications are currently ongoing 
based on RELAP-7 RAVEN simulations and more results 
will be added soon. 

 
CONCLUSIONS 
 

A general scheme for limit surface searching has 
been implemented in RAVEN, characterized by very 

Evaluation of the system response on a low number 
of points of the input space  

Training of the SM  

Determination of 𝑥!,!" by evaluation of the SM on 
the Cartesian grid 

𝑥!,!" 

Determination of 𝜕𝑥!,!"  

END 

No 

Determine where to evaluate the system response by 
the full system representation 

Yes 

Perform the evaluation of the full system model 

Convergence test 

Diesel generator recovery 
time 𝑡!"  [s] 

Primary grid recovery 
time 𝑡!!"# [s] 

Secondary grid recovery 
time 𝑡!""#  [s] 



general and flexible APIs. These allow the use of 
established external software to augment most steps of the 
active supervised learning process: generation of the 
initial training set, creating the supervised algorithm, and 
producing full system representation code. The generation 
of the initial training set may also be done with any of the 
samplers already implemented in RAVEN (Monte Carlo, 
Latin Hypercube, and custom made grids). 

 
Figure 3: Example of LS (green line) and adaptive 
sampling (blue points chosen along the LS) in a 2-
dimensional space 
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