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INTRODUCTION

Reactor physics codes rely on cross-section data to deter-
mine, for example, flux profiles or burn-up calculations. This
data contains cross section values for different neutron-atom
interactions (e.g., absorption, fission and scattering) for a large
number of isotopes as function of energy and it is tabulated
for a specific set of parameters (e.g., moderator temperature,
fuel temperature, moderator density). In order to perform such
neutronic calculations, the amount of this data that needs to
be stored is very large due to the high number of isotopes and
many tabulation points are needed. This data needs to be re-
trieved at each time iteration of the code from the machine
memory which negatively affects the computational time of the
code itself.

This paper aims to reduce the amount of data that needs
to be stored in order to decrease computational time of neu-
tronic codes. More specifically a reduction on the number of
tabulation points is performed. This reduction is performed by
identifying and eliminate redundant information in the tabulated
cross section data. This reduction is performed by employing
dimensionality eduction techniques and, more specifically, Prin-
cipal Component Analysis [1]. We will present the structure of
the algorithm and we will evaluate error generated by the data
reduction process.

DIMENSIONALITY REDUCTION

Dimensionality reduction is the process of finding a bijec-
tive mapping function F:

F : RN 7→ RM (where M < N) (1)

which maps the data points from the M-dimensional space into
a reduced N-dimensional space (i.e., embedding on a manifold)
in such a way that the distances between each point and its
neighbors are preserved.

Linear algorithms for dimensionality reduction, such as
PCA [1] or multidimensional scaling (MDS) [2], have the ad-
vantage that they are easier to implement but they can only
identify linear correlations among state variables. More ad-
vanced algorithms such as ISOMAP [3], Kernel PCA [4],
Laplacian Eigenmaps [5] and Local Linear Embedding [6]
are however able to identify non-linear correlations among
variables. However, a major disadvantage of non-linear algo-
rithms is the difficulty in the construction of the inverse function
F−1 : RM 7→ RN .

In our application, the ability to build both F and F−1 is

Fig. 1. Example of dimensionality reduction using PCA (reduc-
tion from D = 2 to d = 1).

essential and that is the main reason we chose linear algorithms
and, in particular, PCA due to high speed and flexibility of the
algorithm.

Dimensionality reduction through PCA is accomplished
by determining the eigenvectors and their corresponding eigen-
values of the data covariance matrix1 S . The eigenvectors that
correspond to the largest eigenvalues (i.e., the principal compo-
nents) can be used as a set of basis functions. Thus, the original
space is reduced to the space spanned by few eigenvectors and
the original data points are projected into this new reduced
space.

Figure 1 shows an example of dimensionality reduction
using PCA for a data set distributed in a 2-dimensional space.
After performing the eigenvalue-eigenvector decomposition of
the covariance matrix, the algorithm chooses the eigenvector
having the largest eigenvalue (i.e., λ1) as subspace to project
the original data. The algorithm is very easy to implement but
is not able to identify non-linear correlations among variables.

DATA SET

The methodology has been tested through a completed set
of cross-sections for neutron reactions. The data have been
retrieved by an internal tool of the Reactor Physics toolkit
PHISICS [7], capable to translate the binary AMPX cross sec-
tion files into a human readable format. The binary files have
been generated through a SCALE 6.1/TRITON [8] depletion
calculation of a standard 17x17 UOx (4.2% enrichment) fuel
assembly. Table I summarizes the characteristic of the cross
sections used in this paper.

Data set is then composed by 24 = 32 tabulation matrices:

A(p),p = [p1, . . . , p5] (2)

1Given a data set in form of a matrix Z (size D × Λ), rows correspond to
data dimensions (D) and columns correspond to the number data observations
(Λ), the covariance matrix S is determined as: S = 1

Λ−1 Z′Z.



TABLE I. Cross Section Data: summary

Energy groups 7
Cross sections n-tot n-fis, n-abs, n-2n, n-α, n-p

Tabulation 4
Points 16

Isotopes 266

TABLE II. Tabulation values
Parameter pi Value 1 Value 2

p1: Moderator Density (kg/cc) 700 950
p2: Moderator Temperature (K) 558 589

p3: Fuel Temperature (K) 900 1200
p4: Burn-up (GWd/MtHM) 0.0 25.0

each of them composed by 11,172 (Number of Isotopes · Cross
sections types · Number of energy groups) elements.

Interpolation is performed linearly:

A(̃p) =

5∑
i=1

αiA(p(i)) =

5∑
i=1

A(pi(2)) − A(pi(1))
pi(2) − pi(1)

( p̃i − pi(1))

(3)

The reduction process will focus into the reduction of the
number of tabulation matrices.

Before performing the data reduction we investigated the
distribution of each element of the tabulated matrices. Figure 2
plot this analysis: elements of the matrix with high and low
variability are pictured in red and blue respectively.

Fig. 2. Distribution of each element of the tabulated matrices:
elements of the matrix with high and low variability are pictured
in red and blue respectively

Algorithm 1 PCA based Algorithm
1: Given N R×C matrices, view each matrix Xn (n = 1, . . . ,N)

as a RC-dimensional vector
2: Compute the mean X̄ of the Xn matrices
3: Compute deviation matrix U = [U1, . . . ,Un, . . . ,UN]

where Un = X̄ − Xn,
4: Compute Cov = MT M
5: Perform Eigenvalue decomposition of Cov; N eigenvectors

wn and N corresponding eigenvalues λn are generated
6: Sort eigenvalues in decreasing order
7: Choose the first M eigenvalues and their corresponding

eigenvectors
8: Compute vm = Uwm (m = 1, . . . ,M)
9: Each matrix Xn can be approximated as:

Xn ≈

M∑
m=1

yn,mvm (4)

where yn,m = vT
mUn

ALGORITHM IMPLEMENTATION

As mentioned earlier, we chose a linear algorithm for di-
mensionality reduction based on PCA [1]. The algorithm is
structured as follows:

In our application Step 7 is performed by looking at the
reconstruction relative error: M is such that such error is below
1%: ∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
Xn −

M∑
m=1

yn,mvm

M∑
m=1

yn,mvm

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣
∞

< 1% (5)

RESULTS

We applied the PCA-based dimensionality reduction Al-
gorithm 1 based on the full data set with the scope of reduce
the number of cross section matrices. In this respect, Fig. 3
shows the eigenvalues for each of the 32 eigenvectors plotted
in descending order. As also described in Algorithm 1, the
reduction is performed by choosing the first M eigenvectors
such that the relative error in the reconstruction in below 1%
(see Eq. 5). For the data set described above we found that 14
was the minimum number of eigenvectors that satisfies Eq. 5.
That allowed us to reduce the amount of data needed by 56%.

CONCLUSIONS

This paper shown a first approach to reduce the amount
of cross section data needed for neutronic codes. We imple-
mented a PCA-based algorithm and despite the limitations of
the algorithm to model only linear correlations among variables
we were able to considerably reduce the original set of cross



section matrices from 32 to 14 with only limited error in the
reconstruction process (below 1%). Further work will include
the following:

• testing the algorithm presented in this paper for much
larger cross section data (in term of both number and size
of matrices)

• implementation and testing dimensionality reduction algo-
rithms that can model also non-linear correlations among
variables

• reduce the actual size of the matrices by not considering
regions of the matrices that have similar patterns (see
Fig. 2)

REFERENCES

1. I. T. JOLLIFFE, Principal Component Analysis, Springer,
second ed. (October 2002).

2. I. BORG and P. GROENEN, Modern Multidimensional Scal-
ing: Theory and Applications, Springer-Verlag New York
(2005).

3. J. B. TENENBAUM, V. DE SILVA, and J. C. LANGFORD,
“A Global Geometric Framework for Nonlinear Dimension-
ality Reduction,” Science, 290, 2319–2323 (2000).

4. B. SCHLKOPF, A. SMOLA, and K. MÜLLER, “Kernel
principal component analysis,” Advances in kernel methods:
support vector learning, pp. 327–352 (1999).

5. M. BELKIN and P. NIYOGI, “Laplacian Eigenmaps for
dimensionality reduction and data representation,” Neural
Comput., 15, 6, 1373–1396 (Jun. 2003).

6. S. T. ROWEIS and L. K. SAUL, “Nonlinear Dimensionality
Reduction by Locally Linear Embedding,” Science, 290,
2323–2328 (2000).

7. C. RABITI, Y. WANG, G. PALMIOTTI, H. HIRUTA,
J. COGLIATI, and A. ALFONSI, “PHISICS: a New Re-
actor Physics Analysis Toolkit,” in “Proceeding ofAmerican
Nuclear Society (ANS),” (2011), vol. 104, pp. 831–833.

8. A. ALFONSI, C. RABITI, and A. S. EPINEY, “PHISICS
TOOLKIT: MULTI-REACTOR TRANSMUTATION
ANALYSIS UTILITY - MRTAU,” in “Proceeding of Physor
Conference (ANS),” (2012).

Fig. 3. Plot of the eigenvalues for each of the 32 eigenvectors
(in descending order)


